Skip to main content

Advertisement

Log in

Combinatorial RNA Design: Designability and Structure-Approximating Algorithm in Watson–Crick and Nussinov–Jacobson Energy Models

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the Combinatorial RNA Design problem, a minimal instance of RNA design where one must produce an RNA sequence that adopts a given secondary structure as its minimal free-energy structure. We consider two free-energy models where the contributions of base pairs are additive and independent: the purely combinatorial Watson–Crick model, which only allows equally-contributing \(\mathsf{A}\)\(\mathsf{U}\) and \(\mathsf{C}\)\(\mathsf{G}\) base pairs, and the real-valued Nussinov–Jacobson model, which associates arbitrary energies to \(\mathsf{A}\)\(\mathsf{U}\), \(\mathsf{C}\)\(\mathsf{G}\) and \(\mathsf{G}\)\(\mathsf{U}\) base pairs. We first provide a complete characterization of designable structures using restricted alphabets and, in the four-letter alphabet, provide a complete characterization for designable structures without unpaired bases. When unpaired bases are allowed, we characterize extensive classes of (non-)designable structures, and prove the closure of the set of designable structures under the stutter operation. Membership of a given structure to any of the classes can be tested in \(\varTheta (n)\) time, including the generation of a solution sequence for positive instances. Finally, we consider a structure-approximating relaxation of the design, and provide a \(\varTheta (n)\) algorithm which, given a structure S that avoids two trivially non-designable motifs, transforms S into a designable structure constructively by adding at most one base-pair to each of its stems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aguirre-Hernández, R., Hoos, H.H., Condon, A.: Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinform. 8, 34 (2007). doi:10.1186/1471-2105-8-34

    Article  Google Scholar 

  2. Avihoo, A., Churkin, A., Barash, D.: RNAexinv: an extended inverse RNA folding from shape and physical attributes to sequences. BMC Bioinform. 12(1), 319 (2011). doi:10.1186/1471-2105-12-319

    Article  Google Scholar 

  3. Bau, A., Waldmann, J., Will, S.: RNA design by program inversion via SAT solving. In: Palu, A.D., Dovier, A. (eds.) Proceedings of Workshop on Constraint Based Methods for Bioinformatics (WCB 2013), pp. 85–94 (2013)

  4. Busch, A., Backofen, R.: INFO-RNA—a fast approach to inverse RNA folding. Bioinformatics 22(15), 1823–1831 (2006). doi:10.1093/bioinformatics/btl194

    Article  Google Scholar 

  5. Dai, D.C., Tsang, H.H., Wiese, K.C.: RNADesign: local search for RNA secondary structure design. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (2009)

  6. Esmaili-Taheri, A., Ganjtabesh, M., Mohammad-Noori, M.: Evolutionary solution for the RNA design problem. Bioinformatics 30(9), 1250–1258 (2014). doi:10.1093/bioinformatics/btu001

    Article  Google Scholar 

  7. Frid, Y., Gusfield, D.: A simple, practical and complete \(o(n^3/\log n)\)-time algorithm for RNA folding using the Four-Russians speedup. Algorithms Mol. Biol. 5, 13 (2010). doi:10.1186/1748-7188-5-13

    Article  Google Scholar 

  8. Garcia-Martin, J.A., Clote, P., Dotu, I.: RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design. J. Bioinform. Comput. Biol. 11(2), 1350001 (2013). doi:10.1142/S0219720013500017

    Article  Google Scholar 

  9. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: RFAM: an RNA family database. Nucleic Acids Res. 31(1), 439–441 (2003)

    Article  Google Scholar 

  10. Hofacker, I.L., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Chem. Mon. 125(2), 167–188 (1994). doi:10.1007/BF00818163

    Article  Google Scholar 

  11. Höner Zu Siederdissen, C., Hammer, S., Abfalter, I., Hofacker, I.L., Flamm, C., Stadler, P.F.: Computational design of RNAs with complex energy landscapes. Biopolymers 99(12), 1124–1136 (2013). doi:10.1002/bip.22337

    Google Scholar 

  12. Kőnig, D.: Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére. Matematikai és Természettudományi Értesítő 34, 104–119 (1916)

    MATH  Google Scholar 

  13. Levin, A., Lis, M., Ponty, Y., O’Donnell, C.W., Devadas, S., Berger, B., Waldispühl, J.: A global sampling approach to designing and reengineering RNA secondary structures. Nucleic Acids Res. 40(20), 10041–10052 (2012). doi:10.1093/nar/gks768

    Article  Google Scholar 

  14. Lyngsø, R.B., Anderson, J.W., Sizikova, E., Badugu, A., Hyland, T., Hein, J.: FRNAkenstein: multiple target inverse RNA folding. BMC Bioinform. 13, 260 (2012). doi:10.1186/1471-2105-13-260

    Article  Google Scholar 

  15. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Article  Google Scholar 

  16. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6903–6913 (1980)

    Article  Google Scholar 

  17. Reinharz, V., Ponty, Y., Waldispühl, J.: A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution. Bioinformatics 29(13), i308–i315 (2013). doi:10.1093/bioinformatics/btt217

    Article  Google Scholar 

  18. Rodrigo, G., Landrain, T.E., Majer, E., Daròs, J.A., Jaramillo, A.: Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Comput. Biol. 9(8), e1003,172 (2013). doi:10.1371/journal.pcbi.1003172

    Article  Google Scholar 

  19. Schnall-Levin, M., Chindelevitch, L., Berger, B.: Inverting the Viterbi algorithm: an abstract framework for structure design. In: Proceedings of the Twenty-Fifth International Conference on Machine Learning (ICML 2008), Helsinki, Finland, June 5–9, 2008, pp. 904–911 (2008). doi:10.1145/1390156.1390270

  20. Takahashi, M.K., Lucks, J.B.: A modular strategy for engineering orthogonal chimeric RNA transcription regulators. Nucleic Acids Res. 41(15), 7577–7588 (2013). doi:10.1093/nar/gkt452

    Article  Google Scholar 

  21. Taneda, A.: MODENA: a multi-objective RNA inverse folding. Adv. Appl. Bioinform. Chem. 4, 1–12 (2011)

    Google Scholar 

  22. Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38(Database issue), D280–D282 (2010). doi:10.1093/nar/gkp892

    Article  Google Scholar 

  23. Wilson, R.A.: Graphs, Colourings and the Four-colour Theorem. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  24. Wu, S.Y., Lopez-Berestein, G., Calin, G.A., Sood, A.K.: RNAi therapies: drugging the undruggable. Sci. Transl. Med. 6(240), 240ps7 (2014). doi:10.1126/scitranslmed.3008362

    Article  Google Scholar 

  25. Zadeh, J.N., Wolfe, B.R., Pierce, N.A.: Nucleic acid sequence design via efficient ensemble defect optimization. J. Comput. Chem. 32(3), 439–452 (2011). doi:10.1002/jcc.21633

    Article  Google Scholar 

  26. Zakov, S., Tsur, D., Ziv-Ukelson, M.: Reducing the worst case running times of a family of RNA and CFG problems, using Valiant’s approach. Algorithms Mol. Biol. 6(1), 20 (2011). doi:10.1186/1748-7188-6-20

    Article  Google Scholar 

  27. Zhou, Y., Ponty, Y., Vialette, S., Waldispuhl, J., Zhang, Y., Denise, A.: Flexible RNA design under structure and sequence constraints using formal languages. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics (ACM-BCB), BCB’13, pp. 229–238. ACM (2013). doi:10.1145/2506583.2506623

  28. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Cédric Chauve for fruitful discussions and constructive criticisms. YP is supported by the Pacific Institute for the Mathematical Sciences (PIMS), and the French Agence Nationale de la Recherche (ANR-14-CE34-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Ponty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haleš, J., Héliou, A., Maňuch, J. et al. Combinatorial RNA Design: Designability and Structure-Approximating Algorithm in Watson–Crick and Nussinov–Jacobson Energy Models. Algorithmica 79, 835–856 (2017). https://doi.org/10.1007/s00453-016-0196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0196-x

Keywords

Navigation