Skip to main content
Log in

Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The Spanish populations of Pinus sylvestris L. occupy differentiated sites and must therefore include structural variations to cope with varied climate conditions. This study compares wood anatomical traits of P. sylvestris from ten Spanish regions of provenance with contrasting climates, taking into account the effects of region of provenance and tree nested within provenance on variation in wood biometry. In general, the effect of both sources of variation (provenance and tree) on wood biometry was highly significant. Most of the anatomical variations observed were intra-populational (at the tree level), although variation explained by provenance was high for some parameters (e.g., ray frequency and ray parenchyma cell frequency), suggesting high environmental influence. Trees in the driest region, growing in a Mediterranean phytoclimate, were characterized by large tracheid lumens, suggesting more efficient water conduction. They also had thick cell walls, which would reduce the risk of cavitation caused by high implosion stress during periods of drought, as well as a high ray tracheid frequency, implying greater water storage capacity in the sapwood. The population with greatest growth, located in an oroboreal phytoclimate, was characterized by large bordered pits and long tracheids, which would reduce resistivity in water transport. At higher altitudes, tracheid lumen diameter and resin canal diameter tended to be smaller, and intertracheid wall strength was greater. Results are discussed in relation to adaptation of the species to growth demands and frost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alía R, Moro-Serrano J, Notivol E (2001) Genetic variability of Scots pine (Pinus sylvestris) provenances in Spain: Growth traits and survival. Silva Fenn 35:27–38

    Google Scholar 

  • Allué-Andrade JL (1990) Atlas fitoclimático de España: taxonomías. Instituto Nacional de Investigaciones Agrarias, Madrid

    Google Scholar 

  • Castellarnau JM (1883) Estudio micrográfico del sistema leñoso de las coníferas y en general del Género Pinus. Anales de la Sociedad Española de Historia Natural XII:(1–2)

  • Catalán G, Gil P, Galera RM, Martín S, Agúndez D, Alía R (1991) Regiones de procedencia de Pinus sylvestris L. y Pinus nigra Arn. subsp. salzmannii (Dunal). Instituto Nacional para la Conservación de la Naturaleza, Madrid

    Google Scholar 

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–625. doi:10.1111/j.1469-8137.2007.02317.x

    Article  PubMed  Google Scholar 

  • Chudnyi AV (1974) The importance of investigating the resin-duct system in Scots pine wood in selection for resin productivity. Genetika, selektsiya, semenovodstvo i introduktsiya lesnykh porod, Moscow

    Google Scholar 

  • Climent J, Chambel MR, Perez E, Gil L, Pardos J (2002) Relationship between heartwood radius and early radial growth, tree age, and climate in Pinus canariensis. Can J For Res 32:103–111

    Article  Google Scholar 

  • Cochard H, Froux F, Mayr S, Coutand C (2004) Xylem wall collapse in water-stressed pine needles. Plant Physiol 134:401–408. doi:10.1104/pp.103.028357

    Article  CAS  PubMed  Google Scholar 

  • Cochard H, Barigah ST, Kleinhentz M, Eshel A (2008) Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J Plant Physiol 165:976–982. doi:10.1016/j.jplph.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  • Costa-Tenorio M, García-Antón M, Morla-Juriasti C, Sainz-Ollero H (1990) La evolución de los bosques de la Península Ibérica: una interpretación basada en datos paleobiogeográficos. Ecología 1:31–58

    Google Scholar 

  • Davis SD, Sperry JS, Hacke UG (1999) The relationship between xylem conduit diameter and cavitation caused by freezing. Am J Bot 86:1367–1372

    Article  PubMed  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29:1011–1020. doi:10.1093/treephys/tpp035

    Article  PubMed  Google Scholar 

  • Esteban LG, Guindeo A (1988) Anatomía e identificación de maderas de coníferas españolas. Aitim, Madrid

    Google Scholar 

  • Esteban LG, de Palacios P, Guindeo A, García L, Lázaro I, González L, Rodríguez Y, García F, Bobadilla I, Camacho A (2002) Anatomía e identificación de maderas de coníferas a nivel de especie/Anatomy and identification of conifers wood as a species. Fundación Conde del Valle de Salazar-Mundi-Prensa, Madrid

    Google Scholar 

  • Esteban LG, Martín JA, de Palacios P, García-Fernández F, López R (2010) Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees Struct Funct 24:19–30. doi:10.1007/s00468-009-0375-3

    Google Scholar 

  • Ezquerra FJ, Gil L (2001) Wood anatomy and stress distribution in the stem of Pinus pinaster Ait. Invest Agr Sist Recur For 10:165–177

    Google Scholar 

  • Fajardo-Alcántara M, Venturas M, Gil L (2009) Caracterización y recuperación de posibles ejemplares de Pinus x rhaetica Brügger en el pinar de Puebla de Lillo (León). In: Digital Proceedings of the 5° Congreso forestal español. 21–25 September, Ávila, Spain

  • Gil L, López R, García-Mateos A, González-Doncel I (2009) Seed provenance and fire-related reproductive traits of Pinus pinaster in Central Spain. Int J Wildland Fire 18:1003–1009

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloh KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: To grow or defend. Q Rev Biol 67:283–335

    Article  Google Scholar 

  • IAWA Committee (2004) IAWA list of microscopic features for softwood identification. IAWA J 25:1–70

    Google Scholar 

  • Jane FW (1970) The Structure of wood, 2nd edn. A & C Black, London

    Google Scholar 

  • Ladell JT (1959) A new method of measuring tracheid length. Forestry 32:124–125

    Article  Google Scholar 

  • Maherali H, DeLucia EH (2000) Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20:859–867

    CAS  PubMed  Google Scholar 

  • Martínez-García F, Montero G (2000) Typology of Pinus sylvestris L. forests in Spain. Invest Agr: Sist Recur For (Special issue) 1:41–65

    Google Scholar 

  • Martinez-Vilalta J, Pinol J (2002) Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For Ecol Manage 161:247–256

    Article  Google Scholar 

  • Mayr S, Wolfschwenger M, Bauer H (2002) Winter-drought induced embolism in Norway spruce (Picea abies) at the Alpine timberline. Physiol Plant 115:74–80

    Article  CAS  PubMed  Google Scholar 

  • Mayr S, Hacke U, Schmid P, Schwienbacher F, Gruber A (2006) Frost drought in conifers at the alpine timberline: xylem dysfunction and adaptations. Ecology 87:3175–3185

    Article  PubMed  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Mencuccini M, Grace J, Fioravanti M (1997) Biomechanical and hydraulic determinants of tree structure in Scots pine: anatomical characteristics. Tree Physiol 17:105–113

    PubMed  Google Scholar 

  • Peraza C (1964) Estudio de las maderas de coníferas españolas y de la zona norte de Marruecos. Instituto Forestal de Investigaciones y Experiencias, Madrid

    Google Scholar 

  • Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–887. doi:10.1111/j.1469-8137.2007.02323.x

    Article  PubMed  Google Scholar 

  • Pittermann J, Sperry J (2003) Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiol 23:907–914

    PubMed  Google Scholar 

  • Prus-Glowacki W, Stephan BR (1994) Genetic variation of Pinus sylvestris from Spain in relation to other European populations. Silvae Genet 43:7–14

    Google Scholar 

  • Robledo-Arnuncio JJ, Collada C, Alía R, Gil L (2005) Genetic structure of montane isolates of Pinus sylvestris L. in a Mediterranean refugial are. J Biogeogr 32:595–605. doi:10.1111/j.1365-2699.2004.01196.x

    Article  Google Scholar 

  • Rosner S, Klein A, Müller U, Karlsson B (2007) Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure. Tree Physiol 27:1165–1178

    PubMed  Google Scholar 

  • Sheriff DW, Whitehead D (1984) Photosynthesis and wood structure in Pinus radiata D. Don during dehydration and immediately after rewatering. Plant Cell Environ 7:53–62

    Article  Google Scholar 

  • Soranzo N, Alía R, Provan J, Powell W (2000) Patterns of variation at mitochondrial sequence-tagged-site locus provides new insights into the postglacial history of European Pinus sylvestris populations. Mol Ecol 9:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164:S115–S127

    Article  Google Scholar 

  • Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100:605–613

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  Google Scholar 

  • Sterck FJ, Zweifel R, Sass-Klaassen U, Chowdhury Q (2008) Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol 28:529–536

    PubMed  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer Series in Wood Science, 2nd edn. Springer, New York

    Google Scholar 

  • Willis KJ, Bennet KD, Birks HJB (1998) The late quaternary dynamics of pines in Europe. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, New York, pp 107–121

    Google Scholar 

  • Woodward S (1992) Responses of gymnosperm bark tissues to fungal infections. In: Blanchette RA, Biggs AR (eds) Defense mechanisms of woody plants against fungi. Springer, Berlin, pp 62–75

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Luis Gil (Universidad Politécnica de Madrid) for reviewing the manuscript, making suggestions and providing a critique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Martín.

Additional information

Communicated by S. Mayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, J.A., Esteban, L.G., de Palacios, P. et al. Variation in wood anatomical traits of Pinus sylvestris L. between Spanish regions of provenance. Trees 24, 1017–1028 (2010). https://doi.org/10.1007/s00468-010-0471-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-010-0471-4

Keywords

Navigation