Skip to main content
Log in

Monitoring and forecasting nitrate concentration in the groundwater using statistical process control and time series analysis: a case study

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Contaminated water resources have important implications on health and the environment. Nitrate contamination of the groundwater is a serious problem in the European Union. A method based on the statistical process control (SPC) and time series analysis is developed to monitoring and to predict the concentration evolution of nitrate (NO3 ) in groundwater. In many pumping wells the NO3 concentration ([NO3 ]) increases and approaches or even passes the European Community standard of 50 mg l−1. The objective of this paper is to show the application of statistical process control as a monitoring tool for groundwater pollution from agricultural practices. We propose the autoregressive integrated moving average (ARIMA) model as a management tool to monitoring and reduction of the intrusion of nitrate into the groundwater. This tool should help in setting up useful guidelines for evaluating actual environmental performance against the firm’s environmental objectives and targets and regulatory requirements. We concluded that the statistical process control method may be a potentially important way of monitoring groundwater quality that also permits rapid response to serious increases in pollutants concentrations. In doing so, the paper fills an important gap in the water pollution standards and emerging polices (Water Framework directives).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alwan LC, Roberts HV (1989) Time series modelling for statistical process control. In: Keats JB, Hubele NF (eds) Automated manufacturing. Marcel Dekker Inc., New York, pp 87–95

    Google Scholar 

  • Box GEP, Jenkins GM (1976) Time series analysis: forecasting and control. Holden Day, San Francisco

    Google Scholar 

  • Canter LW (1997) Nitrates in groundwater. CRC Press, Boca Raton, pp 73–143

    Google Scholar 

  • CEC (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Union L 327:1–73

    Google Scholar 

  • CEC (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Off J Eur Union L 372:19–31

    Google Scholar 

  • Chistensen OF, Cassiani G, Diggle PJ, Ribero P, Andreotti G (2004) Statistical estimation of the relative efficiency of natural attenuation mechanisms in contaminated aquifers. Stoch Environ Res Risk Assess 18:339–350

    Article  Google Scholar 

  • Cook DF, Zobel CW, Wolfe ML (2006) Environmental statistical process control using an augmented neural network classification approach. Eur J Oper Res 174:1631–1642

    Article  Google Scholar 

  • De Paz JM, Ramos C (2004) Simulation of nitrate leaching for different nitrogen fertilization rates in a region of Valencia (Spain) using a GIS–GLEAMS system. Agric Ecosyst Environ 103(1):59–73

    Article  Google Scholar 

  • European Commission (1998) The Implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources. Office for Official Publications of the European Communities, Luxembourg

  • Generalitat Valenciana (2000) Decreto 13/2000 del 25-enero de 2000, del gobierno valenciano por el que se designan, en el ámbito de la Comunidad Valenciana, determinados municipios como zonas vulnerables a la contaminación de las aguas por nitratos procedentes de fuentes agrarias. DOGV (Diario Oficial de la Generalitat Valenciana) No. 3677. Valencia, Spain, pp 1511–1515

  • Harris TJ, Ross WH (1991) Statistical process control procedures for correlated observations. Can J Chem Eng 69:48–57

    Article  CAS  Google Scholar 

  • ITGME (1998) Mapa de contenido en nitrato de las aguas subterráneas en España. Instituto Tecnológico GeoMinero de España. Ministerio de Medio Ambiente, Madrid

  • Li N, Liang X, Li X, Wang C, Wu DD (2009) Network environment and financial risk using machine learning and sentiment analysis. Hum Ecol Risk Assess 15(2):227–252

    Google Scholar 

  • Militino AF, Ugarte MD, Ibáñez B (2008) Longitudinal analysis of spatially correlated data. Stoch Environ Res Risk Assess 22:49–57

    Article  Google Scholar 

  • Montgomery DC, Mastrangelo CM (1991) Some statistical process control methods for autocorrelated data. J Qual Technol 23:179–268

    Google Scholar 

  • Ramos C, Agut A, Lidón A (2002) Nitrate leaching in important crops of the Valencian Community region (Spain). Environ Pollut 118:215–223

    Article  CAS  Google Scholar 

  • Sanchis EJ (1991) Estudio de la contaminación por nitratos de las aguas subterráneas de la Provincia de Valencia. Origen, balance y evolución espacial y temporal. Graficuatre SL, Valencia

  • USEPA (Unites States Environmental Protection Agency) (1990) The drinking water criteria document on nitrate/nitrite. National Technical Information Service document no. PB91-142836

  • Vigil J, Warburton S, Haynes WS, Kaiser LR (1965) Nitrates in municipal water supply cause metahemoglobinemia in infant. Public Health Rep 80:12

    Google Scholar 

  • Wardell DG, Moskowitz H, Plante RD (1992) Control charts in the presence of data correlation. Manage Sci 38(8):1084–1105

    Article  Google Scholar 

  • Wardell DG, Moskowitz H, Plante RD (1994) Run length distributions of special-cause control charts for correlated processes. Technometrics 36:3–17

    Article  Google Scholar 

  • WHO (World Health Organization) (1993) Guidelines for drinking water quality, 2nd edn (vol 1: Recommendations). WHO, Geneva

  • Worrall F, Burt TP (1999) A univariate model of river water nitrate time series. J Hydrol 214:74–90

    Article  CAS  Google Scholar 

  • Xu J, Li X, Wu DD (2009) Optimizing circular economy planning and risk analysis using system dynamics. Hum Ecol Risk Assess 15(2):316–331

    CAS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees and the editor for several constructive comments that have improved this paper. The author acknowledge the financial support of Programa de Apoyo a la Investigación y Desarrollo (PAID-06-08) of the Universidad Politécnica de Valencia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carlos García-Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Díaz, J.C. Monitoring and forecasting nitrate concentration in the groundwater using statistical process control and time series analysis: a case study. Stoch Environ Res Risk Assess 25, 331–339 (2011). https://doi.org/10.1007/s00477-010-0371-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-010-0371-6

Keywords

Navigation