Skip to main content
Log in

An interval-parameter two-stage stochastic fuzzy program with type-2 membership functions: an application to water resources management

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper presents an interval-parameter two-stage stochastic fuzzy programming with type-2 membership functions (ITSFP–T2MF) approach for supporting water resources management under uncertainty. ITSFP–T2MF is capable not only of dealing with a variety of uncertainties expressed as probability distributions, intervals, and type-2 fuzzy sets, but also of reflecting the complexity of uncertainty presented as the concept of a flexible fuzzy decision. A scenario-based solution method is proposed for solving ITSFP–T2MF, which takes into account different attitudes of decision makers (DMs) towards the objective-function value and constraints. Moreover, the solution method can ensure that no infeasible solutions are included in the results by means of a feasibility test and a constricting algorithm, leading to an enhanced system safety. ITSFP–T2MF is applied to a case study of water resources allocation under uncertainty. The results indicate that interval solutions can be obtained under different scenarios, which enhances the diversity of solutions for supporting the decisions of water resources allocation. Furthermore, a variety of decision alternatives can be generated under different policies for water resources management, which permits an in-depth policy analysis associated with different levels of economic penalties when the promised water-allocation targets are violated, and thus helps DMs identify desired water-allocation plans according to practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Birge JR, Louveaux FV (1988) A multicut algorithm for two-stage stochastic linear programs. Eur J Oper Res 34:384–392

    Article  Google Scholar 

  • Cao MF, Huang GH (2011) Scenario-based methods for interval linear programming problems. J Environ Inform 17:65–74

    Article  Google Scholar 

  • Cao MF, Huang GH, Sun Y, Xu Y, Yao Y (2010) Dual inexact fuzzy chance-constrained programming for planning waste management systems. Stoch Env Res Risk Assess 24:1163–1174

    Article  Google Scholar 

  • Chang NB, Wang SF (1997) A fuzzy goal programming approach for the optimal planning of metropolitan solid waste management systems. Eur J Oper Res 99:303–321

    Article  Google Scholar 

  • Faybishenko B (2010) Fuzzy-probabilisitc calculations of water-balance uncertainty. Stoch Env Res Risk Assess 24:939–952

    Article  Google Scholar 

  • Huang GH (1998) A hybrid inexact-stochastic water management model. Eur J Oper Res 107:137–158

    Article  Google Scholar 

  • Huang GH, Cao MF (2011) Analysis of solutions methods for interval linear programming. J Environ Inform 17:54–64

    Article  Google Scholar 

  • Huang GH, Loucks DP (2000) An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Eng Environ Syst 17:95–118

    Article  Google Scholar 

  • Huang GH, Baetz BW, Patry GG (1992) A grey linear programming approach for municipal solid waste management planning under uncertainty. Civil Eng Environ Syst 9:319–335

    Article  CAS  Google Scholar 

  • Jairaj PG, Vedula S (2000) Multireservoir system optimization using fuzzy mathematical programming. Water Resour Manage 14:457–472

    Article  Google Scholar 

  • Kentel E, Aral MM (2005) 2D Monte Carlo versus 2D fuzzy Monte Carlo health risk assessment. Stoch Environ Res Risk Assess 19:86–96

    Article  Google Scholar 

  • Li YP, Huang GH, Huang YF, Zhou HD (2009) A multistage fuzzy-stochastic programming model for supporting sustainable water-resources allocation and management. Environ Model Softw 24:786–797

    Article  CAS  Google Scholar 

  • Li YP, Huang GH, Guo P, Yang ZF, Nie SL (2010) A dual-interval vertex analysis method and its application to environmental decision making under uncertainty. Eur J Oper Res 200:536–550

    Article  Google Scholar 

  • Maqsood I, Huang GH, Yeomans JS (2005) An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. Eur J Oper Res 167:208–225

    Article  Google Scholar 

  • Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning. Math Program 52:359–375

    Article  Google Scholar 

  • Qin XS (2012) Assessing environmental risks through fuzzy parameterized probabilistic analysis. Stoch Environ Res Risk Assess 26:43–58

    Article  Google Scholar 

  • Qin XS, Huang GH, Zeng GM, Chakma A, Huang YF (2007) An linear-parameter fuzzy nonlinear optimization model for stream water quality management under uncertainty. Eur J Oper Res 180:1331–1357

    Article  Google Scholar 

  • Seifi A, Hipel KW (2001) Interior-point method for reservoir operation with stochastic inflows. ASCE J Water Resour Plan Manage 127:48–57

    Article  Google Scholar 

  • Slowinski R (1986) A multicriteria fuzzy linear programming method for water supply system development planning. Fuzzy Sets Syst 19:217–237

    Article  Google Scholar 

  • Tesfamariam S, Sadiq R (2006) Risk-based environmental decision-making using fuzzy analytic hierarchy process (F-AHP). Stoch Environ Res Risk Assess 21:35–50

    Article  Google Scholar 

  • Wang S, Huang GH (2011) Interactive two-stage stochastic fuzzy programming for water resources management. J Environ Manage 92:1986–1995

    Article  CAS  Google Scholar 

  • Wang S, Huang GH, Lu HW, Li YP (2011) An interval-valued fuzzy linear programming with infinite α-cuts method for environmental management under uncertainty. Stoch Environ Res Risk Assess 25:211–222

    Article  Google Scholar 

  • Wang S, Huang GH, Yang BT (2012) An interval-valued fuzzy-stochastic programming approach and its application to municipal solid waste management. Environ Model Softw 29:24–36

    Article  Google Scholar 

  • Watkins DW Jr, McKinney DC, Lasdon LS, Nielsen SS, Martin QW (2000) A scenario-based stochastic programming model for water supplies from the highland lakes. Int Trans Oper Res 7:211–230

    Article  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8:199–249

    Article  Google Scholar 

  • Zimmermann HJ (1985) Applications of fuzzy set theory to mathematical programming. Inf Sci 36:29–58

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Major Project Program of the Natural Sciences Foundation (51190095), the Natural Science and Engineering Research Council of Canada, the Program for Innovative Research Team (IRT1127), and the MOE Key Project Program (311013). The authors would like to express thanks to the editor and the anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Huang.

Appendix: Solution method

Appendix: Solution method

A scenario-based solution method is proposed for solving the ITSFP–T2MF model, which takes into account six scenarios that represent different attitudes of DMs towards the objective-function value and constraints. Besides, the solution method can guarantee the feasibility of the generated interval solutions by means of a feasibility test and a constricting algorithm. The detailed solution procedures for solving ITSFP–T2MF are shown as follows.

1.1 Scenario 1

Step 1. Solve the following two deterministic submodels, respectively.

Submodel (A1):

$$ {\text{Max}}\,\lambda $$
(A1a)

subject to:

$$ \sum\limits_{i = 1}^{m} {NB_{i}^{ + } } (T_{i}^{ - } + \Updelta T_{i} y_{i} ) - \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {p_{j} C_{i}^{ - } S_{ij}^{ - } } } \ge \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ + } + \lambda (\bar{f}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ - } ), $$
(A1b)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{i} - S_{ij}^{ - } )} \le \bar{q}_{j}^{ + } - \lambda (\bar{q}_{j}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ + } ),\quad \forall j, $$
(A1c)
$$ T_{i}^{ - } + \Updelta T_{i} y_{i} \le T_{i\hbox{max} }^{ + } - \lambda (T_{i\hbox{max} }^{ + } - T_{i\hbox{max} }^{ - } ),\quad \forall i, $$
(A1d)
$$ S_{ij}^{ - } \le T_{i}^{ - } + \Updelta T_{i} y_{i} ,\quad \forall i,j, $$
(A1e)
$$ S_{ij}^{ - } \ge 0, \, \forall i,j, $$
(A1f)
$$ 0 \le y_{i} \le 1,\quad \forall i, $$
(A1g)
$$ 0 \le \lambda \le 1. $$
(A1h)

Submodel (A2):

$$ {\text{Max}}\,\lambda $$
(A2a)

subject to:

$$ \sum\limits_{i = 1}^{m} {NB_{i}^{ - } } (T_{i}^{ - } + \Updelta T_{i} y_{iopt} ) - \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {p_{j} C_{i}^{ + } S_{ij}^{ + } } } \ge \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ - } + \lambda (\bar{f}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ + } ), $$
(A2b)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{{i{\text{opt}}}} - S_{ij}^{ + } )} \le \bar{q}_{j}^{ - } - \lambda (\bar{q}_{j}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ - } ), \, \forall j, $$
(A2c)
$$ S_{ij}^{ + } \le T_{i}^{ - } + \Updelta T_{i} y_{{i{\text{opt}}}} ,\quad \forall i,j, $$
(A2d)
$$ S_{ij}^{ + } \ge S_{{ij{\text{opt}}}}^{ - } ,\quad \forall i,j, $$
(A2e)
$$ 0 \le \lambda \le 1. $$
(A2f)

where \( f_{\text{opt}}^{ + } \), \( S_{{ij{\text{opt}}}}^{ - } \), and \( y_{{i{\text{opt}}}} \) are solutions of submodel (A1); \( f_{\text{opt}}^{ - } \) and \( S_{{ij{\text{opt}}}}^{ + } \) are solutions of submodel (A2). Interval solutions of \( f_{\text{opt}}^{ \pm } = [f_{\text{opt}}^{ - } ,f_{\text{opt}}^{ + } ] \) and \( S_{{ij{\text{opt}}}}^{ \pm } = [S_{{ij{\text{opt}}}}^{ - } ,S_{{ij{\text{opt}}}}^{ + } ] \) can thus be obtained through solving submodels (A1) and (A2).

Step 2. Conduct the feasibility test. If pass, then stop. Otherwise, go to step 3.

Step 3. Apply the constricting algorithm to eliminate infeasible solutions.

1.2 Scenario 2

Step 1. Different from scenario 1, constraints (A1c) in submodel (A1) and constraints (A2c) in submodel (A2) can be respectively converted into the following two inequalities:

$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{i} - S_{ij}^{ - } )} \le \bar{q}_{j}^{ - } - \lambda (\bar{q}_{j}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ - } ),\quad \forall j, $$
(A3)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{iopt} - S_{ij}^{ + } )} \le \bar{q}_{j}^{ + } - \lambda (\bar{q}_{j}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ + } ),\quad \forall j, $$
(A4)

Step 2. Conduct the feasibility test. If pass, then stop. Otherwise, go to step 3.

Step 3. Apply the constricting algorithm to eliminate infeasible solutions.

1.3 Scenario 3

Step 1. Solve the following two deterministic submodels, respectively.

Submodel (A5):

$$ {\text{Max}}\,\lambda $$
(A5a)

subject to:

$$ \sum\limits_{i = 1}^{m} {NB_{i}^{ - } } (T_{i}^{ - } + \Updelta T_{i} y_{i} ) - \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {p_{j} C_{i}^{ + } S_{ij}^{ + } } } \ge \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ - } + \lambda (\bar{f}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ + } ), $$
(A5b)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{i} - S_{ij}^{ + } )} \le \bar{q}_{j}^{ + } - \lambda (\bar{q}_{j}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ + } ),\quad \forall j, $$
(A5c)
$$ T_{i}^{ - } + \Updelta T_{i} y_{i} \le T_{i\hbox{max} }^{ + } - \lambda (T_{i\hbox{max} }^{ + } - T_{i\hbox{max} }^{ - } ),\quad \forall i, $$
(A5d)
$$ S_{ij}^{ + } \le T_{i}^{ - } + \Updelta T_{i} y_{i} ,\quad \forall i,j, $$
(A5e)
$$ S_{ij}^{ + } \ge 0,\quad \forall i,j, $$
(A5f)
$$ 0 \le y_{i} \le 1,\quad \forall i, $$
(A5g)
$$ 0 \le \lambda \le 1. $$
(A5h)

Submodel (A6):

$$ {\text{Max}}\,\lambda $$
(A6a)

subject to:

$$ \sum\limits_{i = 1}^{m} {NB_{i}^{ + } } (T_{i}^{ - } + \Updelta T_{i} y_{iopt} ) - \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {p_{j} C_{i}^{ - } S_{ij}^{ - } } } \ge \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ + } + \lambda (\bar{f}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ - } ), $$
(A6b)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{iopt} - S_{ij}^{ - } )} \le \bar{q}_{j}^{ - } - \lambda (\bar{q}_{j}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ - } ),\quad \forall j, $$
(A6c)
$$ S_{ij}^{ - } \le T_{i}^{ - } + \Updelta T_{i} y_{{i{\text{opt}}}} ,\quad \forall i,j, $$
(A6d)
$$ S_{ijopt}^{ + } \ge S_{ij}^{ - } ,\quad \forall i,j, $$
(A6e)
$$ 0 \le \lambda \le 1. $$
(A6f)

where \( f_{\text{opt}}^{ - } \), \( S_{{ij{\text{opt}}}}^{ + } \), and \( y_{{i{\text{opt}}}} \) are solutions of submodel (A5); \( f_{\text{opt}}^{ + } \) and \( S_{{ij{\text{opt}}}}^{ - } \) are solutions of submodel (A6). Interval solutions of \( f_{\text{opt}}^{ \pm } = [f_{\text{opt}}^{ - } ,f_{\text{opt}}^{ + } ] \) and \( S_{{ij{\text{opt}}}}^{ \pm } = [S_{{ij{\text{opt}}}}^{ - } ,S_{{ij{\text{opt}}}}^{ + } ] \) can thus be obtained through solving submodels (A5) and (A6).

Step 2. Conduct the feasibility test. If pass, then stop. Otherwise, go to step 3.

Step 3. Apply the constricting algorithm to eliminate infeasible solutions.

1.4 Scenario 4

Step 1. Different from scenario 3, constraints (A5c) in submodel (A5) and constraints (A6c) in submodel (A6) can be respectively converted into the following two inequalities:

$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{i} - S_{ij}^{ + } )} \le \bar{q}_{j}^{ - } - \lambda (\bar{q}_{j}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ - } ),\quad \forall j, $$
(A7)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{{i{\text{opt}}}} - S_{ij}^{ - } )} \le \bar{q}_{j}^{ + } - \lambda (\bar{q}_{j}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ + } ),\quad \forall j, $$
(A8)

Step 2. Conduct the feasibility test. If pass, then stop. Otherwise, go to step 3.

Step 3. Apply the constricting algorithm to eliminate infeasible solutions.

1.5 Scenario 5

Step 1. Firstly, solve the following submodel (A9) in which all interval parameters can be converted into their mid-values. Then, solve the submodels (A10) and (A11), respectively.

Submodel (A9):

$$ {\text{Max}}\,\lambda $$
(A9a)

subject to:

$$ \sum\limits_{i = 1}^{m} {NB_{i}^{\text{m}} } T_{i}^{\text{m}} - \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {p_{j} C_{i}^{\text{m}} S_{ij}^{\text{m}} } } \ge \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{\text{m}} + \lambda (\bar{f}^{\text{m}} - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{\text{m}} ), $$
(A9b)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{\text{m}} - S_{ij}^{\text{m}} )} \le \bar{q}_{j}^{\text{m}} - \lambda (\bar{q}_{j}^{\text{m}} - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{\text{m}} ),\quad \forall j, $$
(A9c)
$$ T_{i}^{\text{m}} \le T_{i\hbox{max} }^{\text{m}} ,\quad \forall i, $$
(A9d)
$$ S_{ij}^{\text{m}} \le T_{i}^{\text{m}} ,\quad \forall i,j, $$
(A9e)
$$ S_{ij}^{\text{m}} \ge 0,\quad \forall i,j, $$
(A9f)
$$ 0 \le \lambda \le 1. $$
(A9g)

Submodel (A10):

$$ {\text{Max}}\,\lambda $$
(A10a)

subject to:

$$ \sum\limits_{i = 1}^{m} {NB_{i}^{ + } } (T_{i}^{ - } + \Updelta T_{i} y_{i} ) - \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {p_{j} C_{i}^{ - } S_{ij}^{ - } } } \ge \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ + } + \lambda (\bar{f}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ - } ), $$
(A10b)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{i} - S_{ij}^{ - } )} \le \bar{q}_{j}^{ + } - \lambda (\bar{q}_{j}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ + } ),\quad \forall j, $$
(A10c)
$$ T_{i}^{ - } + \Updelta T_{i} y_{i} \le T_{i\hbox{max} }^{ + } - \lambda (T_{i\hbox{max} }^{ + } - T_{i\hbox{max} }^{ - } ),\quad \forall i, $$
(A10d)
$$ S_{ij}^{ - } \le T_{i}^{ - } + \Updelta T_{i} y_{i} ,\quad \forall i,j, $$
(A10e)
$$ S_{ij}^{ - } \ge 0,\quad \forall i,j, $$
(A10f)
$$ S_{ij}^{\text{m}} \ge S_{ij}^{ - } ,\quad \forall i,j, $$
(A10g)
$$ 0 \le y_{i} \le 1,\quad \forall i, $$
(A10h)
$$ 0 \le \lambda \le 1. $$
(A10i)

Submodel (A11):

$$ {\text{Max}}\,\lambda $$
(A11a)

subject to:

$$ \sum\limits_{i = 1}^{m} {NB_{i}^{ - } } (T_{i}^{ - } + \Updelta T_{i} y_{iopt} ) - \sum\limits_{i = 1}^{m} {\sum\limits_{j = 1}^{n} {p_{j} C_{i}^{ + } S_{ij}^{ + } } } \ge \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ - } + \lambda (\bar{f}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{f}^{ + } ), $$
(A11b)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{iopt} - S_{ij}^{ + } )} \le \bar{q}_{j}^{ - } - \lambda (\bar{q}_{j}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ - } ), \, \forall j, $$
(A11c)
$$ S_{ij}^{ + } \le T_{i}^{ - } + \Updelta T_{i} y_{{i{\text{opt}}}} , \, \forall i,j, $$
(A11d)
$$ S_{ij}^{ + } \ge S_{ij}^{\text{m}} , \, \forall i,j, $$
(A11e)
$$ 0 \le \lambda \le 1. $$
(A11f)

where \( S_{ij}^{\text{m}} \) are solutions of submodel (A9); \( f_{\text{opt}}^{ + } \), \( S_{{ij{\text{opt}}}}^{ - } \), and \( y_{{i{\text{opt}}}} \) are solutions of submodel (A10); \( f_{\text{opt}}^{ - } \) and \( S_{{ij{\text{opt}}}}^{ + } \) are solutions of submodel (A11). Interval solutions of \( f_{\text{opt}}^{ \pm } = [f_{\text{opt}}^{ - } ,f_{\text{opt}}^{ + } ] \) and \( S_{{ij{\text{opt}}}}^{ \pm } = [S_{{ij{\text{opt}}}}^{ - } ,S_{{ij{\text{opt}}}}^{ + } ] \) can thus be obtained through solving submodels (A9), (A10), and (A11).

Step 2. Conduct the feasibility test. If pass, then stop. Otherwise, go to step 3.

Step 3. Apply the constricting algorithm to eliminate infeasible solutions.

1.6 Scenario 6

Step 1. Different from scenario 5, constraints (A10c) in submodel (A10) and constraints (A11c) in submodel (A11) can be respectively converted into the following two inequalities:

$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{i} - S_{ij}^{ - } )} \le \bar{q}_{j}^{ - } - \lambda (\bar{q}_{j}^{ + } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ - } ), \, \forall j, $$
(A12)
$$ \sum\limits_{i = 1}^{m} {(T_{i}^{ - } + \Updelta T_{i} y_{iopt} - S_{ij}^{ + } )} \le \bar{q}_{j}^{ + } - \lambda (\bar{q}_{j}^{ - } - \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{q}_{j}^{ + } ), \, \forall j, $$
(A13)

Step 2. Conduct the feasibility test. If pass, then stop. Otherwise, go to step 3.

Step 3. Apply the constricting algorithm to eliminate infeasible solutions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Huang, G.H. An interval-parameter two-stage stochastic fuzzy program with type-2 membership functions: an application to water resources management. Stoch Environ Res Risk Assess 27, 1493–1506 (2013). https://doi.org/10.1007/s00477-013-0685-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0685-2

Keywords

Navigation