Skip to main content
Log in

Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Understanding the heterogeneity arising from the complex architecture of sedimentary sequences in alluvial fans is challenging. This paper develops a statistical inverse framework in a multi-zone transition probability approach for characterizing the heterogeneity in alluvial fans. An analytical solution of the transition probability matrix is used to define the statistical relationships among different hydrofacies and their mean lengths, integral scales, and volumetric proportions. A statistical inversion is conducted to identify the multi-zone transition probability models and estimate the optimal statistical parameters using the modified Gauss–Newton–Levenberg–Marquardt method. The Jacobian matrix is computed by the sensitivity equation method, which results in an accurate inverse solution with quantification of parameter uncertainty. We use the Chaobai River alluvial fan in the Beijing Plain, China, as an example for elucidating the methodology of alluvial fan characterization. The alluvial fan is divided into three sediment zones. In each zone, the explicit mathematical formulations of the transition probability models are constructed with optimized different integral scales and volumetric proportions. The hydrofacies distributions in the three zones are simulated sequentially by the multi-zone transition probability-based indicator simulations. The result of this study provides the heterogeneous structure of the alluvial fan for further study of flow and transport simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agterberg FP (1974) Geomathematics. Elsevier Sci., New York

    Google Scholar 

  • Anderson MP (2007) Introducing groundwater physics. Phys Today 60(5):42–47

    Article  Google Scholar 

  • Carle SF, Fogg GE (1996) Transition probability-based indicator geostatistics. Math Geol 28(4):453–475

    Article  Google Scholar 

  • Carle SF, Fogg GE (1997) Modeling spatial variability with one and multidimensional continuous-lag Markov chain. Math Geol 29(7):891–918

    Article  Google Scholar 

  • Carrera J, Neuman SP (1986) Estimation of aquifer parameters under steady state and transient condition: 2. Uniqueness, stability, and solution algorithms. Water Resour Res 22(2):211–227

    Article  Google Scholar 

  • Clifton PM, Neuman SP (1982) Effects of kriging and inverse modeling on conditional simulation of the Avra Valley aquifer in southern Arizona. Water Resour Res 18(4):1215–1234

    Article  Google Scholar 

  • Dai Z, Samper J (2004) Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour Res 40:W07407

    Article  Google Scholar 

  • Dai Z, Ritzi RW, Dominic DF (2005) Improving permeability semivariograms with transition probability models of hierarchical sedimentary architecture derived from outcrop analog studies. Water Resour Res 41:W07032

    Article  Google Scholar 

  • Dai Z, Wolfsberg A, Lu Z, Reimus P (2007a) Upscaling matrix diffusion coefficients for heterogeneous fractured rocks. Geophys Res Lett 34:L07408

    Google Scholar 

  • Dai Z, Wolfsberg A, Lu Z, Ritzi R Jr (2007b) Representing aquifer architecture in macrodispersivity models with an analytical solution of the transition probability matrix. Geophys Res Lett 34:L20406

    Article  Google Scholar 

  • Dai Z, Samper J, Wolfsberg A, Levitt D (2008) Identification of relative conductivity models for water flow and solute transport in unsaturated compacted bentonite. Phys Chem Earth 33:S177–S185. doi:10.1016/j.pce.2008.10.012

    Article  Google Scholar 

  • Dai Z, Wolfsberg A, Lu Z, Deng H (2009) Scale dependence of sorption coefficients for contaminant transport in saturated fractured rock. Geophys Res Lett 36:L01403

    Article  Google Scholar 

  • Dai Z, Wolfsberg A, Reimus P, Deng H, Kwicklis E, Ding M, Ware D, Ye M (2012) Identification of sorption processes and parameters for radionuclide transport in fractured rock. J Hydrol 414–415:220–230

    Article  Google Scholar 

  • Dai Z, Middleton R, Viswanathan H, Fessenden-Rahn J, Bauman J, Pawar R, Lee S, McPherson B (2014) An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environ Sci Technol Lett 1:49–54

    Article  CAS  Google Scholar 

  • Deng H, Dai Z, Wolfsberg AV, Lu Z, Ye M, Reimus P (2010) Upscaling of reactive mass transport in fractured rocks with multimodal reactive mineral facies. Water Resour Res 46:W06501

    Article  Google Scholar 

  • Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91(3):248–257

    Article  CAS  Google Scholar 

  • Deutsch CV, Journel AG (1992) GSLIB: geostatistical software library. Oxford Univ. Press, New York

    Google Scholar 

  • Doherty J, Hunt R (2009) Two statistics for evaluating parameter identifiability and error reduction. J Hydrol 366:119–127

    Article  Google Scholar 

  • Harp D, Dai Z, Wolfsberg A, Vrugt J (2008) Aquifer structure identification using stochastic inversion. Geophys Res Lett 35:L08404

    Article  Google Scholar 

  • Miall AD (1997) The geology of stratigraphic sequences. Springer, Berlin

    Book  Google Scholar 

  • Mishra S, Parker SC (1989) Parameter estimation for coupled unsaturated flow and transport. Water Resour Res 25(3):385–396

    Article  CAS  Google Scholar 

  • Proce C, Ritzi RW, Dominic D, Dai Z (2004) Modeling multiscale heterogeneity and aquifer interconnectivity. Ground Water 42(5):658–670

    Article  CAS  Google Scholar 

  • Ritzi RW (2000) Behavior of indicator semivariograms and transition probabilities in relation to the variance in lengths of hydrofacies. Water Resour Res 36(11):3375–3381

    Article  Google Scholar 

  • Ritzi RW, Allen-King RM (2007) Why did Sudicky [1986] find an exponential-like spatial correlation structure for hydraulic conductivity at the Borden research site? Water Resour Res 43:W01406

    Article  Google Scholar 

  • Ritzi RW, Dominic DF, Kausch KW, McAlenney PJ, Basial MJ (1995) Hydrofacies distribution and correlation in the Miami valley aquifer system. Water Resour Res 31(12):3271–3281

    Article  CAS  Google Scholar 

  • Ritzi RW, Dai Z, Dominic DF (2004) Spatial correlation of permeability in cross-stratified sediment with hierarchical architecture. Water Resour Res 40:W03513

    Article  Google Scholar 

  • Ross S (1988) A First course in probability. Macmillan, New York

    Google Scholar 

  • Rubin Y (2003) Applied stochastic hydrogeology. Oxford Univ. Press, New York

    Google Scholar 

  • Samper FJ, Neuman SP (1986) Adjoint state equations for advective-dispersive transport. In: Proceeding of the 6th international conference in finite elements in waterresource, New York pp 423–437

  • Samper FJ, Neuman SP (1989) Estimation of spatial covariance structures by adjoint state maximum likelihood cross validation 1. Theory. Water Resour Res 25(3):351–362

    Article  Google Scholar 

  • Samper J, Dai Z, Molinero J, García-Gutiérrez M, Missana T, Mingarro M (2006) Inverse modeling of tracer experiments in FEBEX compacted Ca-bentonite. Phys Chem Earth 31:640–648

    Article  Google Scholar 

  • Soltanian R, Ritzi R, Dai Z, Huang C, Dominic D (2015a) Transport of kinetically sorbing solutes in heterogeneous sediments with multimodal conductivity and hierarchical organization across scales. Stoch Environ Res Risk Assess 29:709–726

  • Soltanian R, Ritzi R, Huang C, Dai Z (2015b) Relating reactive solute transport to hierarchical and multiscale sedimentary architecture in a Lagrangian-based transport model: 1. Time-dependent effective retardation factor. Water Resour Res 51(3):1586–1600

    Article  Google Scholar 

  • Soltanian R, Ritzi R, Huang C, Dai Z (2015c) Relating reactive solute transport to hierarchical and multi-1 scale sedimentary architecture in a Lagrangian-based transport model: 2. Particle displacement variance. Water Resour Res 51(3):1601–1618

    Article  Google Scholar 

  • Sun NZ, Yeh WW (1990) Coupled inverse problem in groundwater modeling, 1, sensitivity analysis and parameter identification. Water Resour Res 26(10):2507–2525

    Article  CAS  Google Scholar 

  • Sun AY, Ritzi RW, Sims DW (2008) Characterization and modeling of spatial variability in a complex alluvial aquifer: implications on solute transport. Water Resour Res 44:W04402

    Google Scholar 

  • Weissmann GS, Fogg GE (1999) Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework. J Hydrol 226:48–65

    Article  Google Scholar 

  • Weissmann GS, Carle SA, Fogg GE (1999) Three-dimensional hydrofacies modeling based on soil survey analysis and transition probability geostatistics. Water Resour Res 35(6):1761–1770

    Article  Google Scholar 

  • Ye M, Khaleel R (2008) A Markov chain model for characterizing medium heterogeneity and sediment layering structure. Water Resour Res 44:W09427

    Google Scholar 

  • Zappa G, Bersezio R, Felletti F, Giudici M (2006) Modeling heterogeneity of gravel-sand, braided stream alluvial aquifers at the facies scale. J Hydrol 325:134–153

    Article  Google Scholar 

  • Zhang Y, Gable CW, Person M (2006) Equivalent hydraulic conductivity of an experimental stratigraphy: implications for basin-scale flow simulations. Water Resour Res 42:W05404

    Google Scholar 

  • Zhu L, Gong H, Li X, Li Y, Su X, Guo G (2013) Comprehensive analysis and artificial intelligent simulation of land subsidence of Beijing, China. Chin Geogr Sci 23(2):237–248

    Article  Google Scholar 

  • Zhu L, Gong H, Dai Z, Xu T, Su X (2015a) An integrated assessment of the impact of precipitation and groundwater on vegetation growth in arid and semiarid areas. Environ Earth Sci. doi:10.1007/s12665-015-4513-5

  • Zhu L, Gong HL, Li Xj, Wang R, Chen BB, Dai Z, Teatini P (2015b) Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng Geol 193:243–255

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation (Nos. 41201420, 41130744), Beijing Nova Program (No. Z111106054511097) and Beijing Young Talent Program. We benefited from discussions with Robert W. Ritzi of the Wright State University and his comments and suggestions greatly improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenxue Dai or Huili Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Dai, Z., Gong, H. et al. Statistic inversion of multi-zone transition probability models for aquifer characterization in alluvial fans. Stoch Environ Res Risk Assess 30, 1005–1016 (2016). https://doi.org/10.1007/s00477-015-1089-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-015-1089-2

Keywords

Navigation