Skip to main content
Log in

An improved \({\alpha }\)-dominance strategy for many-objective optimization problems

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The convergence ability of Pareto-based evolutionary algorithms sharply reduces for many objective optimization problems because the solutions are difficult to rank by the Pareto dominance. To increase the selection pressure toward the global optimal solutions and well-maintain the diversity of obtained solutions, in this paper, an improved \({\alpha }\)-dominance strategy is proposed. The proposal assigns \({\alpha }\) values based on an elliptic function used to rank the solutions to enhance the convergence pressure, and it can also well maintain the diversity of obtained solutions through assigning different values of \({\alpha }\) for different solutions, i.e., the solutions whose objective vectors locate in the objective space are assigned a larger \({\alpha }\). Experimental results show that the improved \({\alpha }\)-dominance strategy can guide the searching process to converge to the Pareto Front and maintain the diversity of obtained solutions for many-objective optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Auger A, Bader J, Brockhoff D, Zitzler E (2009) Theory of the hypervolume indicator: optimal \(\mu \)-distributions and the choice of the reference point. In: Proceedings of the foundations of genetic algorithm, vol X, pp 87–102

  • Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput 19:45–76

    Article  Google Scholar 

  • Bentley PJ, Wakefield JP (1997) Finding acceptable solutions in the pareto-optimal range using multiobjective genetic algorithms. World Conf Soft Comput Des Manuf. 231–240

  • Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 180(3):1653–1669

    Article  Google Scholar 

  • Beume N, Fonseca C, López-Ibáñe M, Paquete L, Vahrenhold J (2009) On the complexity of computing the hypervolume indicator. IEEE Trans Evol Comput 13(5):1075–1082

    Article  Google Scholar 

  • Coello Coello CA, Cruz Cortés N (2005) Solving multiobjective optimization problems using an artificial immune system. Genet Program Evol Mach 6(2):163–190

    Article  Google Scholar 

  • Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algorithms for solving multiobjective problems. Kluwer, New York

  • Coello Coello CA, Lamont GB, Van Veldhuizen DA (2006) Evolutionary algorithms for solving multi-objective problems (genetic and evolutionary computation). Springer-Verlag, New York

    Google Scholar 

  • Deb K (2001) Multiobjective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  • Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. In: Congress on evolutionary computation (CEC 2002), pp 825–830

  • Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization, pp 105–145. Springer, London

  • di Pierro F, Khu S-T, Savi’c DA (2007) An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE Trans Evol Comput 11(1):17–45

    Article  Google Scholar 

  • Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization problems. IEEE Trans Syst Man Cybern Part A Syst Hum 34(3):315–326

    Article  Google Scholar 

  • Friedrich T, Horoba C, Neumann F (2009) Multiplicative approximations and the hypervolume indicator. In: Proceedings of the 2009 genetic and evolutionary computation conference, pp 571–578

  • Hughes EJ (2005) Evolutionary many-objective optimization: many once or one many? In: Proceedings of the 2005 IEEE congress on evolutionary computation, pp 222–227

  • Hughes EJ (2007) MSOPS-II: a general-purpose many-objective optimizer. In: Proceedings of the 2007 IEEE congress on evolutionary computation, pp 3944–3951

  • Ishibuchi H, Nojima Y (2007) Optimization, of scalarizing functions through evolutionary multiobjective optimization. In: Lecture notes in computer science, vol 4403. Evolutionary multi-criterion optimization, EMO, pp 51–65. Springer, Berlin

  • Ishibuchi H, Sakane Y, Tsukamoto N, Nojima Y (2009) Evolutionary many-objective optimization by NSGA-II and MOEA/D with large populations. In: Proceedings of 2009 IEEE international conference on systems, man, and cybernetics, pp 1820–1825

  • Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. IEEE Congr Evol Comput 2419–2426

  • Karl Bringmann, Tobias Friedrich, Christian Igel, Thomas Voß (2013) Speeding up many-objective optimization by Monte Carlo approximations. Artif Intell 204:22–29

    Article  Google Scholar 

  • Kokolo I, Hajime K, Shigenobu K (2001) Failure of pareto-based MOEAs: does nondominated really mean near to optimal? Proc Congr Evol Comput 2:957–962

  • Kokshenev I, Braga AP (2010) An efficient multi-objective learning algorithm for RBF neural network. Neurocomputing 73(16):2799–2808

    Article  Google Scholar 

  • Le K, Landa-Silva D (2007) Obtaining better non-dominated sets using volume dominance. In: 2007 IEEE congress on evolutionary computation, pp 3119–3126

  • Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 13(2):284–302

  • Nebro A, Durillo J, Garcia-Nieto J, Coello CAC, Luna F, Alba E (2009) SMPSO: a new PSO-based metaheuristic for multi-objective optimization. IEEE Sympos Comput Intell Multicriteria Decis Mak 2009:66–73

    Google Scholar 

  • Robert S, Torrie J, Dickey D (1997) Principles and procedures of statistics: a biometrical approach. McGraw-Hill, New York

    Google Scholar 

  • Sato H, Aguirre HE, Tanaka K (2007) Controlling dominance area of solutions and its impact on the performance of mOEAs. In: Obayashi S, Deb K, Poloni C, Hiroyasu T, Murata T (eds) EMO 2007. LNCS, vol 4403, pp 5–20. Springer, Heidelberg

  • Schutze O, Esquivel X, Lara A, Coello Coello CA (2012) Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans Evol Comput 16(4):504–522

    Article  Google Scholar 

  • Tan KC, Lee TH, Khor EF (2001) Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization. IEEE Trans Evol Comput 5(6):565–588

    Article  Google Scholar 

  • Van Veldhuizen DA (1999) Multiobjective evolutionary algorithms: classifications, analyses, and new innovations. Ph.D. dissertation, Department ofElectrical and Computer Engineering, Graduate School Engineering, Air Force Institute ofTechnology, Wright-Patterson AFB, OH

  • Wagner T, Beume N, Naujoks B (2007) Pareto-, aggregation-, and indicator-based methods in manyobjective optimization. In: Lecture notes in computer science, vol 4403. Evolutionary multi-criterion optimization—EMO, pp 742–756. Springer, Berlin

  • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731

    Article  Google Scholar 

  • Zitzler E, Künzli S (2004) Indicator-based selection in multiobjective search. In: Lecture notes in computer science, vol 3242. Parallel problem solving from nature—PPSN VIII, pp 832–842. Springer, Berlin

  • Zou X, Chen Y, Liu M, Kang L (2008) A new evolutionary algorithm for solving many-objective optimization problems. IEEE Trans Syst Man Cybern Part B Cybern 38(5):1402–1412

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 61272119, 61472297).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Wang.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Wang, Y. & Hu, L. An improved \({\alpha }\)-dominance strategy for many-objective optimization problems. Soft Comput 20, 1105–1111 (2016). https://doi.org/10.1007/s00500-014-1570-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1570-8

Keywords

Navigation