Skip to main content
Log in

On global spatial regularity in elasto-plasticity with linear hardening

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the global spatial regularity of solutions of elasto-plastic models with linear hardening. In order to point out the main idea, we consider a model problem on a cube, where we prescribe Dirichlet and Neumann boundary conditions on the top and the bottom, respectively, and periodic boundary conditions on the remaining faces. Under natural smoothness assumptions on the data we obtain \({u \in {\rm L}^\infty((0, T); {\rm H}^{\frac{3}{2}-\delta}(\Omega))}\) for the displacements and \({z \in {\rm} L^\infty((0,T); {\rm H}^{\frac{1}{2}-\delta}(\Omega))}\) for the internal variables. The proof is based on a difference quotient technique and a reflection argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, H.-D., Chełmiński, K.: Quasistatic problems in viscoplasticity theory I: models with linear hardening. In: Gohberg, I., et al. (eds.) Operator Theoretical Methods and Applications to Mathematical Physics. The Erhard Meister memorial volume. Oper. Theory Adv. Appl., vol. 147, pp. 105–129. Birkhäuser, Basel (2004)

  2. Alber, H.-D., Nesenenko, S.: Local H 1–regularity and \({H^{\frac{1}{3}-\delta}}\) –regularity up to the boundary in time dependent viscoplasticity. Preprint 2537, Darmstadt University of Technology, Department of Mathematics (2008)

  3. Bensoussan A., Frehse J.: Asymtotic behaviour of the time dependent Norton-Hoff law in plasticiy theory and \({H^1_{loc}}\) regularity. Comment. Math. Univ. Carolinae 37(2), 285–304 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Demyanov A.: Regularity of stresses in Prandtl-Reuss perfect plasticity. Calc. Var. Partial Differ. Equ. 34(1), 23–72 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duvaut, G., Lions, J.L.: Les inéquations en mécanique et en physique. In: Travaux et recherches mathematiques, Chap. 5, vol. 21. Dunod, Paris, pp. 228–276 (1972)

  6. Frehse J., Löbach D.: Hölder continuity for the displacements in isotropic and kinematic hardening with von Mises yield criterion. Z. Angew. Math. Mech. 88(8), 617–629 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Grundlehren der Mathematischen Wissenschaften, vol. 224. Springer-Verlag, Berlin, p. 161 (1977)

  8. Haslinger, J., Hlaváček, I., Lovíšek, J., Nečas, J.: Solution of variational inequalities in mechanics. In: Applied Mathematical Sciences, Chap. 3, vol. 66. Springer-Verlag, New York, pp. 238–247 (1988)

  9. Han W., Reddy B.D.: Plasticity, Mathematical Theorie and Numerical Analysis. Springer Verlag Inc., New York (1999)

    Google Scholar 

  10. Johnson C.: On plasticity with hardening. J. Math. Anal. Appl. 62, 325–336 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  11. Knees D., Neff P.: Regularity up to the boundary for nonlinear elliptic systems arising in time-incremental infinitesimal elasto-plasticity. SIAM J. Math. Anal. 40(1), 21–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Knees D.: Global regularity of the elastic fields of a power-law model on Lipschitz domains. Math. Methods Appl. Sci. 29, 1363–1391 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mielke, A.: Evolution of rate-independent systems (ch.6). In: Dafermos, C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary Equations II, pp. 461–559. Elsevier B.V. (2005)

  14. Nesenenko, S.: Homogenization and Regularity in Viscoplasticity. PhD thesis, Technische Universität Darmstadt (2006)

  15. Repin S.I.: Errors of finite element method for perfectly elasto-plastic problems. Math. Models Methods Appl. Sci. 6(5), 587–604 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Seregin G.A.: Differential properties of solutions of evolutionary variational inequalities in plasticity theory. Probl. Mat. Anal. 12, 153–173 (1992)

    MATH  Google Scholar 

  17. Shi P.: Interior regularity of solutions to a dynamic cyclic plasticity model in higher dimensions. Adv. Math. Sci. Appl. 9(2), 817–837 (1999)

    MATH  MathSciNet  Google Scholar 

  18. Stefanelli U.: A variational principle for hardening elastoplasticity. SIAM J. Math. Anal. 40(2), 623–652 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Triebel, H.: Theory of function spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel, p. 39 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothee Knees.

Additional information

Communicated by L. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knees, D. On global spatial regularity in elasto-plasticity with linear hardening. Calc. Var. 36, 611 (2009). https://doi.org/10.1007/s00526-009-0247-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-009-0247-0

Mathematics Subject Classification (2000)

Navigation