Skip to main content

Advertisement

Log in

Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The classical Hardy inequality for the Laplacian Δ on \({\mathbb{R}^n}\) shows the borderline-behavior of a potential V for the following question: whether the Schrödinger operator −Δ + V has a finite or infinite number of the discrete spectrum. In this paper, we will give a sharp generalization of this inequality on \({\mathbb{R}^n}\) to a relative version of that on large classes of complete noncompact manifolds. Replacing \({\mathbb{R}^n}\) by some specific classes of complete noncompact manifolds, including hyperbolic spaces, we also establish some sharp criteria for the above-type question.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L.: Elliptic systems on manifolds with asymptotically negative curvature. Indiana Univ. Math. J. 42, 1359–1388 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bando S., Kasue A., Nakajima H.: On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth. Invent. Math. 97, 313–349 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barta J.: Sur la vibration fondamental d’une menbrane. Comptes rendus Acad. Sci. Paris 204, 472–473 (1937)

    MATH  Google Scholar 

  4. Carron G.: Inégalités de Hardy sur les variétés riemanniennes non-compactes. J. Math. Pures Appl. 76(9), 883–891 (1997)

    MathSciNet  Google Scholar 

  5. Chavel, I.: Eigenvalues in Riemannian Geometry, Pure and Applied Mathamatics. Academic Press, New York (1984)

  6. Davies E.B.: Some norm bounds and quadratic form inequalities for Schrödinger operators II. J. Oper. Theory 12, 177–196 (1984)

    MATH  Google Scholar 

  7. Davies E.B.: A review of Hardy inequalities. Oper. Theory Adv. Appl. 110, 55–67 (1998)

    Google Scholar 

  8. Fabes E., Kenig C., Serapioni R.: The local regularity of solutions of degenerate elliptic equation. Commun. Partial Differ. Equ. 7, 77–116 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Graham C.R., Lee J.M.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87, 186–225 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Greene, R.E., Wu, H.: Function Theory on Manifolds Which Possess a Pole, Lecture Notes in Mathamatics, vol. 699. Springer, New York (1979)

  11. Gustafson S.J., Sigal I.M.: Mathematical Concepts of Quantum Mechanics. Springer, New York (2003)

    Book  MATH  Google Scholar 

  12. Hardy G.H., Littlewood J.E., Olya G.P.: Inequalities. Cambridge University Press, Cambridge (1952)

    MATH  Google Scholar 

  13. Hassell A., Marshall S.: Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree −2. Trans. Am. Math. Soc. 360, 4145–4167 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heintze E., Karcher H.: A general comparison theorem with applications to volume estimates for submanifolds. Ann. Sci. Ecole Norm. Sup. Paris 11, 451–470 (1978)

    MathSciNet  MATH  Google Scholar 

  15. Kasue A.: On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold. Ann. Sci. Ecole Norm. Sup. 17, 31–44 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Kirsch W., Simon B.: Corrections to the classical behavior of the number of bound states of Schrödinger operators. Ann. Phys. 183, 122–130 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kombe I., Özaydin M.: Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 361(12), 6191–6203 (2009)

    Article  MATH  Google Scholar 

  18. Kombe, I., Özaydin, M.: Hardy-Poincaré, Rellich and uncertainty principle inequalities on Riemannian manifolds. arXiv:1103.2747 (preprint)

  19. Kumura H.: On the essential spectrum of the Laplacian on complete manifolds. J. Math. Soc. Jpn. 49, 1–14 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, J.M.: Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds. Memoirs of the American Mathematical Society, vol. 864. American Mathematical Society (2006)

  21. Levin D., Solomyak M.: The Rozenblum–Lieb–Cwikel inequality for Markov generators. J. Anal. Math. 71, 173–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mazzeo R.: The Hodge cohomology of a conformally compact metric. J. Differ. Geom. 28, 309–339 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Murata M.: Finiteness of negative spectra of elliptic operators. Can. Math. Bull. 28, 487–491 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. II. Academic Press, New York (1972)

  25. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV, Academic Press, New York (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Akutagawa.

Additional information

Communicated by Y. Giga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akutagawa, K., Kumura, H. Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds. Calc. Var. 48, 67–88 (2013). https://doi.org/10.1007/s00526-012-0542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0542-z

Mathematics Subject Classification

Navigation