Skip to main content
Log in

Large conformal metrics with prescribed sign-changing Gauss curvature

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \((M,g)\) be a two dimensional compact Riemannian manifold of genus \(g(M)>1\). Let \(f\) be a smooth function on \(M\) such that

$$\begin{aligned} f \ge 0, \quad f\not \equiv 0, \quad \min _M f = 0. \end{aligned}$$

Let \(p_1,\ldots ,p_n\) be any set of points at which \(f(p_i)=0\) and \(D^2f(p_i)\) is non-singular. We prove that for all sufficiently small \(\lambda >0\) there exists a family of “bubbling” conformal metrics \(g_\lambda =e^{u_\lambda }g\) such that their Gauss curvature is given by the sign-changing function \(K_{g_\lambda }=-f+\lambda ^2\). Moreover, the family \(u_\lambda \) satisfies

$$\begin{aligned} u_\lambda (p_j) = -4\log \lambda -2\log \left( \frac{1}{\sqrt{2}} \log \frac{1}{\lambda }\right) +O(1) \end{aligned}$$

and

$$\begin{aligned} \lambda ^2e^{u_\lambda }\rightharpoonup 8\pi \sum _{i=1}^{n}\delta _{p_i},\quad \text{ as } \lambda \rightarrow 0, \end{aligned}$$

where \(\delta _{p}\) designates Dirac mass at the point \(p\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aubin, T., Bismuth, S.: Prescribed scalar curvature on compact Riemannian manifolds in the negative case. J. Funct. Anal. 143(2), 529–541 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baraket, S., Pacard, F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. 6(1), 1–38 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berger, M.S.: Riemannian structures of prescribed Gaussian curvature for compact 2- manifolds. J. Differ. Geom. 5, 325–332 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bismuth, S.: Prescribed scalar curvature on a \(C^\infty \) compact Riemannian manifold of dimension two. Bull. Sci. Math. 124(3), 239–248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borer, F., Galimberti, L., Struwe, M.: Large conformal metrics of prescribed Gauss curvature on surfaces of higher genus. Comm. Math. Helv. (to appear)

  6. Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u=V(x)e^u\) in two dimensions. Comm. Part. Differ. Equ. 16, 1223–1253 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, S.-Y., Gursky, M., Yang, P.: The scalar curvature equation on 2- and 3-spheres. Calc. Var. 1, 205–229 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C.-C., Lin, C.-S.: Topological degree for a mean field equation on Riemann surfaces. Comm. Pure Appl. Math. 56(2003), 1667–1727 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. del Pino, M., Kowalczyk, M., Musso, M.: Singular limits in Liouville-type equations. Calc. Var. Part. Differ. Equ. 24, 47–81 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, W.Y., Liu, J.: A note on the prescribing Gaussian curvature on surfaces. Trans. Am. Math. Soc. 347, 1059–1066 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Esposito, P., Grossi, M., Pistoia, A.: On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 227–257 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kazdan, J.L., Warner, F.W.: Curvature functions for compact 2-manifolds. Ann. Math. 99(2), 14–47 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10, 113–134 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kazdan, J.L., Warner, F.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. 101, 317–331 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.-Y., Shafrir, I.: Blow-up analysis for solutions of \(-\Delta u= Ve^u\) in dimension two. Indiana Univ. Math. J. 43, 1255–1270 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, L., Wei, J.: Convergence for a Liouville equation. Comment. Math. Helv. 76, 506–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moser, J.: On a nonlinear problem in differential geometry. Dynamical systems (Proc. Sympos. Univ. Bahia, Salvador, 1971), pp. 273–280. Academic Press, New York (1973)

  18. Weston, V.H.: On the asymptotic solution of a partial differential equation with an exponential nonlinearity. SIAM J. Math. Anal. 9, 1030–1053 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The first author has been supported by Fondecyt, Fondo Basal CMM and Iniciativa Científica Milenio, Chile. The second author has been supported by Fondecyt-Chile, and by a public grant from the French National Research Agency (ANR) part of the “Investissements d’Avenir” program (ref: ANR-10-LABX-0098, LabEx SMP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel del Pino.

Additional information

Communicated by M. Struwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Pino, M., Román, C. Large conformal metrics with prescribed sign-changing Gauss curvature. Calc. Var. 54, 763–789 (2015). https://doi.org/10.1007/s00526-014-0805-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-014-0805-y

Mathematics Subject Classification

Navigation