Skip to main content
Log in

A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Conducting polymers possess good conductivity, can be easily modified, have a particular redox activity. Noble metal nanomaterials, in turn, possess high conductivity, catalytic properties and large surface-to-volume ratios. Synergistic materials consisting of both conducting polymer and metal nanomaterial therefore are most useful materials for use in electrochemical immunosensors with improved sensitivity and specificity. This review (with 75 references) gives an overview on advances in conducting polymer based noble metal nanomaterial hybrids for amperometric immunoassay of the 13 most common tumor markers. The review is divided into the following sections: (1) Polyaniline based noble metal nanomaterial hybrids; (2) Polyaniline derivative-based noble metal nanomaterial hybrids; (3) Polypyrrole-based noble metal nanomaterial hybrids. A final section covers future perspectives regarding challenges on the design of electrochemical immunoassays.

Advances on conducting polymer and noble metal nanomaterial hybrids for amperometric immunoassay of tumor marker are reviewed. Future perspectives regarding challenges on the construction of electrochemical immunosensing interface for tumor marker are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Conti F, Dall'Agata MD, Gramenzi A, Biselli M (2015) Biomarkers for the early diagnosis of bacterial infection and the surveillance of hepatocellular carcinoma in cirrhosis. Biomark Med 9:1343–1351

    Article  CAS  Google Scholar 

  2. Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090

    Article  CAS  Google Scholar 

  3. Wang JJ, Liu H, Huang XY, Ren JC (2015) Homogeneous immunoassay for the cancer marker alpha-fetoprotein using single wavelength excitation fluorescence cross-correlation spectroscopy and CdSe/ZnS quantum dots and fluorescent dyes as labels. Microchim Acta 183:749–755

    Article  Google Scholar 

  4. Tan L, Chen KC, Huang C, Peng RF, Luo XY, Yang R, Cheng YF, Tang YW (2015) A fluorescent turn-on detection scheme for α-fetoprotein using quantum dots placed in a boronate-modified molecularly imprinted polymer with high affinity for glycoproteins. Microchim Acta 182:2615–2622

    Article  CAS  Google Scholar 

  5. Ge SG, Ge L, Yan M, Song XR, Yu J, Liu SS (2013) A disposable immunosensor device for point-of-care test of tumor marker based on copper-mediated amplification. Biosens Bioelectron 43:425–431

    Article  CAS  Google Scholar 

  6. Lee YM, Jeong YJ, Kang HJ, Chung SJ, Chung BH (2009) Cascade enzyme-linked immunosorbent assay (CELISA). Biosens Bioelectron 25:332–337

    Article  CAS  Google Scholar 

  7. Liang RP, Yao GH, Fan LX, Qiu JD (2012) Magnetic Fe3O4@Au composite-enhanced surface plasmon resonance for ultrasensitive detection of magnetic nanoparticle-enriched α-fetoprotein. Anal Chim Acta 737:22–28

    Article  CAS  Google Scholar 

  8. Wu S, Liu ZM, Liu N, Ma ZF (2015) Oligomeric 2-aminothiophenol decorated carboxyl graphene: a new surface enhanced Raman reporter and its application in immunosensing. Sensors Actuators B Chem 206:502–507

    Article  CAS  Google Scholar 

  9. Hu JQ, Wang ZP, Li JH (2007) Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced raman scattering, and the application in biodetection. Sensors 7:3299–3311

    Article  CAS  Google Scholar 

  10. Tang LH, Liu Y, Ali MM, Kang DK, Zhao WA, Li JH (2012) Colorimetric and ultrasensitive bioassay based on a dual-amplification system using aptamer and DNAzyme. Anal Chem 84:4711–4717

    Article  CAS  Google Scholar 

  11. Xianyu YL, Chen YP, Jiang XY (2015) Horseradish peroxidase-mediated, iodide-catalyzed Cascade reaction for Plasmonic immunoassays. Anal Chem 87:10688–10692

    Article  CAS  Google Scholar 

  12. Gao ZQ, Xu MD, Lu MH, Chen GN, Tang DP (2015) Urchin-like (gold core)@(platinum shell) nanohybrids: a highly efficient peroxidase-mimetic system for in situ amplified colorimetric immunoassay. Biosens Bioelectron 70:194–201

    Article  CAS  Google Scholar 

  13. Xu SJ, Liu Y, Wang TH, Li JH (2011) Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Anal Chem 83:3817–3823

    Article  CAS  Google Scholar 

  14. Zhang Y, Sun GQ, Yang HM, Yu JH, Yan M, Song XR (2016) Multifunctional reduced graphene oxide trigged chemiluminescence resonance energy transfer: novel signal amplification strategy for photoelectrochemical immunoassay of squamous cell carcinoma antigen. Biosens Bioelectron 79:55–62

    Article  CAS  Google Scholar 

  15. Wang ZP, Hu J, Jin Y, Yao X, Li JH (2006) In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clin Chem 52:1958–1961

    Article  CAS  Google Scholar 

  16. Guo ZY, Hao TT, Du SP, Chen BB, Wang ZB, Li X, Wang S (2013) Multiplex electrochemiluminescence immunoassay of two tumor markers using multicolor quantum dots as labels and graphene as conducting bridge. Biosens Bioelectron 44:101–107

    Article  CAS  Google Scholar 

  17. Li L, Zhang Y, Li S, Wang X, Li C, Ge S, Yu J, Yan M, Song X (2013) Ultrasensitive electrochemiluminescence immunoassay for tumor marker based on quantum dots coated carbon nanospheres. J Lumin 144:6–12

    Article  CAS  Google Scholar 

  18. Zhang Y, Liu W, Ge SG, Yan M, Wang S, Yu JH, Li N, Song XR (2013) Multiplexed sandwich immunoassays using flow-injection electrochemiluminescence with designed substrate spatial-resolved technique for detection of tumor markers. Biosens Bioelectron 41:684–690

    Article  CAS  Google Scholar 

  19. Ho JA, Lin YC, Wang LS, Hwang KC, Chou PT (2009) Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. Anal Chem 81:1340–1346

    Article  CAS  Google Scholar 

  20. Wu L, Qu XG (2015) Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 44:2963–2997

    Article  CAS  Google Scholar 

  21. Ma ZF, Liu N (2015) Design of immunoprobes for electrochemical multiplexed tumor marker detection. Expert Rev Mol Diagn 15:1075–1083

    Article  CAS  Google Scholar 

  22. Wang LY, Rong QF, Ma ZF (2016) Construction of electrochemical immunosensing interface for multiple cancer biomarkers detection. Electroanalysis 28:1692–1699

    Article  CAS  Google Scholar 

  23. Zhang B, Liu BQ, Chen GN, Tang DP (2015) Redox and catalysis ‘all-in-one’ infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosens Bioelectron 64:6–12

    Article  CAS  Google Scholar 

  24. Li L, Zhang LN, Yu JH, Ge SG, Song XR (2015) All-graphene composite materials for signal amplification toward ultrasensitive electrochemical immunosensing of tumor marker. Biosens Bioelectron 71:108–114

    Article  CAS  Google Scholar 

  25. Wang ZF, Liu N, Ma ZF (2014) Platinum porous nanoparticles hybrid with metal ions as probes for simultaneous detection of multiplex cancer biomarkers. Biosens Bioelectron 53:324–329

    Article  CAS  Google Scholar 

  26. Xu T, Liu N, Yuan J, Ma ZF (2015) Triple tumor markers assay based on carbon–gold nanocomposite. Biosens Bioelectron 70:161–166

    Article  CAS  Google Scholar 

  27. Ge SG, Li WP, Yan M, Song XR, Yu JH (2015) Photoelectrochemical detection of tumor markers based on a CdS quantum dot/ZnO nanorod/Au@Pt-paper electrode 3D origami immunodevice. J Mater Chem B 3:2426–2432

    Article  CAS  Google Scholar 

  28. Tang DP, Hou L, Niessner R, Xu MD, Gao ZQ, Knopp D (2013) Multiplexed electrochemical immunoassay of biomarkers using metal sulfide quantum dot nanolabels and trifunctionalized magnetic beads. Biosens Bioelectron 46:37–43

    Article  CAS  Google Scholar 

  29. Liu ZM, Ma ZF (2013) Fabrication of an ultrasensitive electrochemical immunosensor for CEA based on conducting long-chain polythiols. Biosens Bioelectron 46:1–7

    Article  Google Scholar 

  30. Gao CM, Zhang LN, Wang YH, Yu JH, Song XR (2016) Visible-light driven biofuel cell based on hierarchically branched titanium dioxide nanorods photoanode for tumor marker detection. Biosens Bioelectron 83:327–333

    Article  CAS  Google Scholar 

  31. Liu N, Feng F, Liu ZM, Ma ZF (2015) Porous platinum nanoparticles and PdPt nanocages for use in an ultrasensitive immunoelectrode for the simultaneous determination of the tumor markers CEA and AFP. Microchim Acta 182:1143–1151

    Article  CAS  Google Scholar 

  32. Lai WQ, Tang DP, Que XH, Zhuang JY, Fu LB, Chen GN (2012) Enzyme-catalyzed silver deposition on irregular-shaped gold nanoparticles for electrochemical immunoassay of alpha-fetoprotein. Anal Chim Acta 755:62–68

    Article  CAS  Google Scholar 

  33. Liu Y, Liu Y, Feng HB, Wu YM, Joshi L, Zeng XQ, Li JH (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68

    Article  CAS  Google Scholar 

  34. Gao Q, Han JM, Ma ZF (2013) Polyamidoamine dendrimers-capped carbon dots/Au nanocrystal nanocomposites and its application for electrochemical immunosensor. Biosens Bioelectron 49:323–328

    Article  CAS  Google Scholar 

  35. Liu ZM, Rong QF, Ma ZF, Han HM (2015) One-step synthesis of redox-active polymer/AU nanocomposites for electrochemical immunoassay of multiplexed tumor markers. Biosens Bioelectron 65:307–313

    Article  CAS  Google Scholar 

  36. Bangar MA, Shirale DJ, Chen W, Myung NV, Mulchandani A (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81:2168–2175

    Article  CAS  Google Scholar 

  37. Wang LY, Shan J, Feng F, Ma ZF (2016) Novel redox species polyaniline derivative-Au/Pt as sensing platform for label-free electrochemical immunoassay of carbohydrate antigen 199. Anal Chim Acta 911:108–113

    Article  CAS  Google Scholar 

  38. Wang LY, Liu N, Ma ZF (2015) Novel gold-decorated polyaniline derivatives as redox-active species for simultaneous detection of three biomarkers of lung cancer. J Mater Chem B 3:2867–2872

    Article  CAS  Google Scholar 

  39. Shi Y, Peng LL, Yu GH (2015) Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 7:12796–12806

    Article  CAS  Google Scholar 

  40. Vidal JC, Garcia-Ruiz E, Castillo JR (2003) Recent advances in electropolymerized conducting polymers in amperometric biosensors. Microchim Acta 143:93–111

    Article  CAS  Google Scholar 

  41. Wang LY, Feng F, Ma ZF (2015) Novel electrochemical redox-active species: one-step synthesis of polyaniline derivative-Au/Pd and its application for multiplexed immunoassay. Sci Rep 5:16855

    Article  CAS  Google Scholar 

  42. Aydemir N, Malmstrom J, Travas-Sejdic J (2016) Conducting polymer based electrochemical biosensors. Phys Chem Chem Phys 18:8264–8277

    Article  CAS  Google Scholar 

  43. Green RA, Baek S, Poole-Warren LA, Martens PJ (2010) Conducting polymer-hydrogels for medical electrode applications. Sci Technol Adv Mat 11:014107

    Article  Google Scholar 

  44. Barthus RC, Lira LM, Córdoba de Torresi SI (2008) Conducting polymer- hydrogel blends for electrochemically controlled drug release devices. J Brazil Chem Soc 19:630–636

  45. Wang YZ, Qu K, Tang LH, Li ZL, Moore E, Zeng XQ, Liu Y, Li JH (2014) Nanomaterials in carbohydrate biosensors. TrAC-Trends Anal Chem 58:54–70

    Article  CAS  Google Scholar 

  46. Chu CC, Shen L, Ge SG, Ge L, Yu JH, Yan M, Song XR (2014) Using “Dioscorea batatas bean”-like silver nanoparticles based localized surface plasmon resonance to enhance the fluorescent signal of zinc oxide quantum dots in a DNA sensor. Biosens Bioelectron 61:344–350

    Article  CAS  Google Scholar 

  47. Chen SH, Yuan R, Chai YQ, Hu FX (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    Article  CAS  Google Scholar 

  48. Ahmad S, Sultan A, Raza W, Muneer M, Mohammad F (2016) Boron nitride based polyaniline nanocomposite: Preparation, property, and application. J Appl Polym Sci 133. doi:10.1002/app.43989

  49. Park C, Lee C, Kwon O (2016) Conducting polymer based nanobiosensors. Polymers 8:249

    Article  Google Scholar 

  50. Arya SK, Dey A, Bhansali S (2011) Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosens Bioelectron 28:166–173

    Article  CAS  Google Scholar 

  51. He SJ, Wang QY, Yu YY, Shi QJ, Zhang L, Chen ZG (2015) One-step synthesis of potassium ferricyanide-doped polyaniline nanoparticles for label-free immunosensor. Biosens Bioelectron 68:462–467

    Article  CAS  Google Scholar 

  52. Yu XP, Li YN, Wu J, Ju HX (2014) Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal Chem 86:4501–4507

    Article  CAS  Google Scholar 

  53. Fan HX, Guo ZK, Gao L, Zhang Y, Fan DW, Ji GL, Du B, Wei Q (2015) Ultrasensitive electrochemical immunosensor for carbohydrate antigen 72-4 based on dual signal amplification strategy of nanoporous gold and polyaniline–Au asymmetric multicomponent nanoparticles. Biosens Bioelectron 64:51–56

    Article  CAS  Google Scholar 

  54. Lai GS, Zhang HL, Tamanna T, Yu AM (2014) Ultrasensitive immunoassay based on electrochemical measurement of enzymatically produced polyaniline. Anal Chem 86:1789–1793

    Article  CAS  Google Scholar 

  55. Xu T, Jia XL, Chen X, Ma ZF (2014) Simultaneous electrochemical detection of multiple tumor markers using metal ions tagged immunocolloidal gold. Biosens Bioelectron 56:174–179

    Article  CAS  Google Scholar 

  56. Liu N, Liu ZM, Han HL, Ma ZF (2014) Graphene oxide reduced directly by redox probes for multiplexed detection of tumor markers. J Mater Chem B 2:3292–3298

    Article  CAS  Google Scholar 

  57. Chen X, Ma ZF (2014) Multiplexed electrochemical immunoassay of biomarkers using chitosan nanocomposites. Biosens Bioelectron 55:343–349

    Article  CAS  Google Scholar 

  58. Jia XL, Chen X, Han JM, Ma J, Ma ZF (2014) Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay. Biosens Bioelectron 53:65–70

    Article  CAS  Google Scholar 

  59. Rong QF, Feng F, Ma ZF (2016) Metal ions doped chitosan–poly(acrylic acid) nanospheres: synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer. Biosens Bioelectron 75:148–154

    Article  CAS  Google Scholar 

  60. Wang ZF, Chen X, Ma ZF (2014) Chitosan coated copper and cadmium hexacyanocobaltate nanocubes as immunosensing probes for the construction of multiple analytes platform. Biosens Bioelectron 61:562–568

    Article  CAS  Google Scholar 

  61. Liu N, Ma ZF (2014) Au–ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes. Biosens Bioelectron 51:184–190

    Article  CAS  Google Scholar 

  62. Tang D, Yuan R, Chai YQ (2007) Magnetic control of an electrochemical microfluidic device with an arrayed immunosensor for simultaneous multiple immunoassays. Clin Chem 53:1323

    Article  CAS  Google Scholar 

  63. Lai WQ, Zhuang JY, Tang J, Chen GN, Tang DP (2012) One-step electrochemical immunosensing for simultaneous detection of two biomarkers using thionine and ferrocene as distinguishable signal tags. Microchim Acta 178:357–365

    Article  CAS  Google Scholar 

  64. Li QF, Tang DP, Lou FM, Yang XM, Chen GN (2014) Simultaneous electrochemical multiplexed immunoassay of biomarkers based on multifunctionalized graphene nanotags. ChemElectroChem 1:441–447

    Article  Google Scholar 

  65. Wang GJ, Qing Y, Shan JL, Jin F, Yuan R, Wang D (2013) Cation-exchange antibody labeling for simultaneous electrochemical detection of tumor markers CA15-3 and CA19-9. Microchim Acta 180:651–657

    Article  CAS  Google Scholar 

  66. Lu WB, Tao L, Wang Y, Cao XW, Ge J, Dong J, Qian WP (2015) An electrochemical immunosensor for simultaneous multiplexed detection of two lung cancer biomarkers using Au nanoparticles coated resin microspheres composed of L-tryptophan and caffeic acid. Ionics 21:1141–1152

    Article  CAS  Google Scholar 

  67. Ma AJ, Xu J, Zhang XH, Zhang B, Wang DY, Xu HL (2014) Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt, and Au-Pd particles as excellent catalysts. Sci Rep 4:4849

    CAS  Google Scholar 

  68. Karyakin AA, Karyakina EE, Schmidt HL (1999) Electropolymerized azines: a new group of electroactive polymers. Electroanalysis 11:149–155

    Article  CAS  Google Scholar 

  69. Shan D, Mu SL, Mao BW (2001) Detection of intermediate during the electrochemical polymerization of azure B and growth of poly(azure B) film. Electroanalysis 13:493–498

    Article  CAS  Google Scholar 

  70. Shan J, Wang LY, Ma ZF (2016) Novel metal-organic nanocomposites: poly(methylene blue)-Au and its application for an ultrasensitive electrochemical immunosensing platform. Sensors Actuators B Chem 237:666–671

    Article  CAS  Google Scholar 

  71. Shan J, Ma ZF (2016) Simultaneous detection of five biomarkers of lung cancer by electrochemical immunoassay. Microchim Acta 183:2889–2897

    Article  CAS  Google Scholar 

  72. Liu JC, Mu SL (1999) The electrochemical polymerization of methylene blue and properties of polymethylene blue. Synth Met 107:159–165

    Article  CAS  Google Scholar 

  73. Shan D, Mu SL (2001) Electrochemical synthesis and properties of poly(azure B). Chinese J Polym Sci 4:359–370

    Google Scholar 

  74. Rong QF, Han HL, Feng F, Ma ZF (2015) Network nanostructured polypyrrole hydrogel/Au composites as enhanced electrochemical biosensing platform. Sci Rep 5:11440

    Article  Google Scholar 

  75. Li X, Zhong M, Sun C, Luo YM (2005) A novel bilayer film material composed of polyaniline and poly(methylene blue). Mater Lett 59:3913–3916

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financed by grants from the National Natural Science Foundation of China (21273153, 21673143), Beijing Natural Science Foundation (2132008) and the Project of the Construction of Scientific Research Base by the Beijing Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanfang Ma.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, J., Ma, Z. A review on amperometric immunoassays for tumor markers based on the use of hybrid materials consisting of conducting polymers and noble metal nanomaterials. Microchim Acta 184, 969–979 (2017). https://doi.org/10.1007/s00604-017-2146-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2146-y

Keywords

Navigation