Skip to main content
Log in

A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of Cd(II) and Pb(II)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Polyimide (PI) sheets were laser etched to obtain graphene-based carbon nanomaterials (LEGCNs). These were analyzed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy which confirmed the presence of stacked multilayer graphene nanosheets. Their large specific surface and large number of edge-plane active sites facilitate the accumulation of metal ions. A glassy carbon electrode (GCE) with an in-situ plated bismuth film was modified with the LEGCNs to give a sensor with satisfactory response for the simultaneous determination of cadmium(II) and lead(II) by means of square wave anodic stripping voltammetry. It appears that is the first report on an electrochemical sensor based on the use of laser etched graphene for determination of heavy metal ions. Figures of merit for detection of Cd(II) include (a) a low and well separated working potential of −0.80 V (vs. Ag/AgCl), (b) a wide linear range (from 7 to 120 μg·L−1), and a low detection limits 0.47 μg·L−1. The respective data for Pb(II) are (a) -0.55 V, (b) 5 to 120 μg·L−1, and (c) 0.41 μg·L−1. The modified GCE displays remarkable repeatability, reproducibility, selectivity and stability. The sensor was applied to the simultaneous determination of Cd(II) and Pb(II) in spiked real water samples. The results confirm that the laser etching technique is an efficient tool for the preparation of carbon nanomaterials with high quality and great sensing performance.

Bismuth film and laser etched graphene-modified glassy carbon electrode (BF-LEGCN/GCE) for the simultaneous determination of cadmium(II) and lead(II) by square wave anodic stripping voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xin Y, Liu J, Zhou Y, Liu W, Gao J, Xie Y, Yin Y, Zou Z (2011) Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J Power Sources 196(3):1012–1018. https://doi.org/10.1016/j.jpowsour.2010.08.051

    Article  CAS  Google Scholar 

  2. Wang Z, Yu G, Xia J, Zhang F, Liu Q (2018) One-step synthesis of a methylene blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin. Mikrochim Acta 185(5):279. https://doi.org/10.1007/s00604-018-2796-4

    Article  CAS  PubMed  Google Scholar 

  3. Liu X, Li Z, Ding R, Ren B, Li Y (2015) A nanocarbon paste electrode modified with nitrogen-doped graphene for square wave anodic stripping voltammetric determination of trace lead and cadmium. Microchim Acta 183(2):709–714. https://doi.org/10.1007/s00604-015-1713-3

    Article  CAS  Google Scholar 

  4. Fahimirad B, Asghari A, Rajabi M (2017) Magnetic graphitic carbon nitride nanoparticles covalently modified with an ethylenediamine for dispersive solid-phase extraction of lead (II) and cadmium (II) prior to their quantitation by FAAS. Microchim Acta 184(8):3027–3035. https://doi.org/10.1007/s00604-017-2273-5

    Article  CAS  Google Scholar 

  5. Su Y, Zhou X, Long Y, Li W (2018) Immobilization of horseradish peroxidase on amino-functionalized carbon dots for the sensitive detection of hydrogen peroxide. Mikrochim Acta 185(2):114. https://doi.org/10.1007/s00604-017-2629-x

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Lu F, Yan Z, Wu D, Ma H, Du B, Wei Q (2015) Electrochemiluminescence immunosensing strategy based on the use of Au@Ag nanorods as a peroxidase mimic and NH4CoPO4 as a supercapacitive supporter: application to the determination of carcinoembryonic antigen. Microchim Acta 182(7–8):1421–1429. https://doi.org/10.1007/s00604-015-1473-0

    Article  CAS  Google Scholar 

  7. Xin Y, Liu J, Jie X, Liu W, Liu F, Yin Y, Gu J, Zou Z (2012) Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts. Electrochim Acta 60:354–358. https://doi.org/10.1016/j.electacta.2011.11.062

    Article  CAS  Google Scholar 

  8. Zhuang X, Chen D, Zhang S, Luan F, Chen L (2018) Reduced graphene oxide functionalized with a CoS2/ionic liquid composite and decorated with gold nanoparticles for voltammetric sensing of dopamine. Mikrochim Acta 185(3):166. https://doi.org/10.1007/s00604-018-2712-y

    Article  CAS  PubMed  Google Scholar 

  9. Foroughi F, Rahsepar M, Hadianfard MJ, Kim H (2017) Microwave-assisted synthesis of graphene modified CuO nanoparticles for voltammetric enzyme-free sensing of glucose at biological pH values. Mikrochim Acta 185(1):57. https://doi.org/10.1007/s00604-017-2558-8

    Article  CAS  PubMed  Google Scholar 

  10. Zhan F, Gao F, Wang X, Xie L, Gao F, Wang Q (2016) Determination of lead (II) by adsorptive stripping voltammetry using a glassy carbon electrode modified with β-cyclodextrin and chemically reduced graphene oxide composite. Microchim Acta 183(3):1169–1176. https://doi.org/10.1007/s00604-016-1754-2

    Article  CAS  Google Scholar 

  11. Wang Z L, DX, Wang H G, Wu Z, Zhang X B (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 7(3):2422–2430. https://doi.org/10.1021/nn3057388

  12. Lin J, Peng Z, Liu Y, Ruiz-Zepeda F, Ye R, Samuel EL, Yacaman MJ, Yakobson BI, Tour JM (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. https://doi.org/10.1038/ncomms6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lai T, Cai W, Dai W, Ye J (2014) Easy processing laser reduced graphene: a green and fast sensing platform for hydroquinone and catechol simultaneous determination. Electrochim Acta 138:48–55. https://doi.org/10.1016/j.electacta.2014.06.070

    Article  CAS  Google Scholar 

  14. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330. https://doi.org/10.1126/science.1216744

    Article  CAS  PubMed  Google Scholar 

  15. Veronica Strong SD, El-Kady MF, Lech A, Wang Y, Weiller BH, Kaner RB (2012) Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 6(2):1395–1403. https://doi.org/10.1021/nn204200w

    Article  CAS  PubMed  Google Scholar 

  16. Joshi RK, Alwarappan S, Yoshimura M, Sahajwalla V, Nishina Y (2015) Graphene oxide: the new membrane material. Appl Mater Today 1(1):1–12. https://doi.org/10.1016/j.apmt.2015.06.002

  17. Peng Z, Lin J, Ye R, Samuel EL, Tour JM (2015) Flexible and stackable laser-induced graphene supercapacitors. ACS Appl Mater Interfaces 7(5):3414–3419. https://doi.org/10.1021/am509065d

    Article  CAS  PubMed  Google Scholar 

  18. Fenzl C, Nayak P, Hirsch T, Wolfbeis OS, Alshareef HN, Baeumner AJ (2017) Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens 2(5):616–620. https://doi.org/10.1021/acssensors.7b00066

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Li Z, Meng Y, Zhang P, Su Z, Liu Y, Huang Y, Zhou Y, Xie Q, Yao S (2014) Sensitive square wave anodic stripping voltammetric determination of Cd2+ and Pb2+ ions at bi/Nafion/overoxidized 2-mercaptoethanesulfonate-tethered polypyrrole/glassy carbon electrode. Sensors Actuators B Chem 191:94–101. https://doi.org/10.1016/j.snb.2013.09.084

    Article  CAS  Google Scholar 

  20. Zhang C, Zhou Y, Tang L, Zeng G, Zhang J, Peng B, Xie X, Lai C, Long B, Zhu J (2016) Determination of cd(2+) and Pb(2+) based on mesoporous carbon nitride/self-doped polyaniline nanofibers and square wave anodic stripping voltammetry. Nanomaterials (Basel) 6(7). https://doi.org/10.3390/nano6010007

  21. Wang F, Wang K, Dong X, Mei X, Zhai Z, Zheng B, Lv J, Duan W, Wang W (2017) Formation of hierarchical porous graphene films with defects using a nanosecond laser on polyimide sheet. Appl Surf Sci 419:893–900. https://doi.org/10.1016/j.apsusc.2017.05.084

    Article  CAS  Google Scholar 

  22. Rahimi R, Ochoa M, Tamayol A, Khalili S, Khademhosseini A, Ziaie B (2017) Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of carbon-polyaniline composite. ACS Appl Mater Interfaces 9(10):9015–9023. https://doi.org/10.1021/acsami.6b16228

    Article  CAS  PubMed  Google Scholar 

  23. Desimoni E, Brunetti B (2013) Presenting analytical performances of electrochemical sensors. Some suggestions. Electroanalysis 25(7):1645–1651. https://doi.org/10.1002/elan.201300150

    Article  CAS  Google Scholar 

  24. Xiao L, Xu H, Zhou S, Song T, Wang H, Li S, Gan W, Yuan Q (2014) Simultaneous detection of Cd (II) and Pb (II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode. Electrochim Acta 143:143–151. https://doi.org/10.1016/j.electacta.2014.08.021

    Article  CAS  Google Scholar 

  25. Ping J, Wang Y, Wu J, Ying Y (2014) Development of an electrochemically reduced graphene oxide modified disposable bismuth film electrode and its application for stripping analysis of heavy metals in milk. Food Chem 151:65–71. https://doi.org/10.1016/j.foodchem.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  26. Cerovac S, Guzsvany V, Konya Z, Ashrafi AM, Svancara I, Roncevic S, Kukovecz A, Dalmacija B, Vytras K (2015) Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134:640–649. https://doi.org/10.1016/j.talanta.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  27. Sahoo PK, Panigrahy B, Sahoo S, Satpati AK, Li D, Bahadur D (2013) In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: as an electroactive material for analysis of heavy metals. Biosens Bioelectron 43:293–296. https://doi.org/10.1016/j.bios.2012.12.031

    Article  CAS  PubMed  Google Scholar 

  28. Kefala G, Economou A (2006) Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry. Anal Chim Acta 576(2):283–289. https://doi.org/10.1016/j.aca.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  29. Kachoosangi RT, Banks CE, Ji X, Compton RG (2007) Electroanalytical determination of cadmium (II) and lead (II) using an <i>in-situ</i> bismuth film modified edge plane pyrolytic graphite electrode. Anal Sci 23(3):283–289. https://doi.org/10.2116/analsci.23.283

    Article  PubMed  Google Scholar 

  30. Geca I, Korolczuk M (2017) Anodic stripping voltammetry following double deposition and stripping steps: application of a new approach in the course of lead ion determination. Talanta 171:321–326. https://doi.org/10.1016/j.talanta.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  31. Adarakatti PS, Gangaiah VK, Banks CE, Siddaramanna A (2017) One-pot synthesis of Mn3O4/graphitic carbon nanoparticles for simultaneous nanomolar detection of Pb (II), Cd (II) and Hg (II). J Mater Sci 53(7):4961–4973. https://doi.org/10.1007/s10853-017-1896-6

    Article  CAS  Google Scholar 

  32. Shi L, Li Y, Rong X, Wang Y, Ding S (2017) Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions. Anal Chim Acta 968:21–29. https://doi.org/10.1016/j.aca.2017.03.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Guangdong Nature Science Foundation (Project No. 2017A030312005), and National Natural Science Foundation of China (NSFC, Project No. 21875070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshan Ye.

Ethics declarations

The author (s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 7526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Lu, Z., Zhang, Y. et al. A glassy carbon electrode modified with a bismuth film and laser etched graphene for simultaneous voltammetric sensing of Cd(II) and Pb(II). Microchim Acta 185, 438 (2018). https://doi.org/10.1007/s00604-018-2966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2966-4

Keywords

Navigation