Skip to main content

Advertisement

Log in

Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area, China

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

In this study, a bivariate hydrologic risk framework is proposed based on a coupled entropy-copula method. In the proposed risk analysis framework, bivariate flood frequency would be analyzed for different flood variable pairs (i.e., flood peak-volume, flood peak-duration, flood volume-duration). The marginal distributions of flood peak, volume, and duration are quantified through both parametric (i.e., gamma, general extreme value (GEV), and lognormal distributions) and nonparametric (i.e., entropy) approaches. The joint probabilities of flood peak-volume, peak-duration, and volume-duration are established through copulas. The bivariate hydrologic risk is then derived based on the joint return period to reflect the interactive effects of flood variables on the final hydrologic risk values. The proposed method is applied to the risk analysis for the Xiangxi River in the Three Gorges Reservoir area, China. The results indicate the entropy method performs best in quantifying the distribution of flood duration. Bivariate hydrologic risk would then be generated to characterize the impacts of flood volume and duration on the occurrence of a flood. The results suggest that the bivariate risk for flood peak-volume would not decrease significantly for the flood volume less than 1000 m3/s. Moreover, a flood in the Xiangxi River may last at least 5 days without significant decrease of the bivariate risk for flood peak-duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamowski K (1989) A Monte Carlo comparison of parametric and nonparametric estimation of flood frequencies. J Hydrol 108:295–308

    Article  Google Scholar 

  • Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49(268):765–769

    Article  Google Scholar 

  • Arshad M, Rasool MT, Ahmad MI (2003) Anderson Darling and modified Anderson Darling tests for generalized Pareto distribution. Pak J Appl Sci 3(2):85–88

    Article  Google Scholar 

  • Chebana F, Dabo-Niang S, Ouarda TBMJ (2012) Exploratory functional flood frequency analysis and outlier detection. Water Resour Res 48, W04514

    Article  Google Scholar 

  • Chen L, Ye L, Singh V, Zhou J, Guo S (2012) Flood coincidence risk analysis using multivariate copula functions. J Hydrol Eng 17(6):742–755

    Article  Google Scholar 

  • Chen L, Singh VP, Guo S (2013) Measure of correlation between river flows using the copula-entropy method. J Hydrol Eng 18:1591–1606

    Article  Google Scholar 

  • Chen L, Ye L, Singh V, Zhou J, Guo S (2014) Determination of input for artificial neural networks for flood forecasting using the copula entropy method. J Hydrol Eng. doi:10.1061/(ASCE)HE.1943-5584.0000932

    Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics, Thirdth edn. Wiley, New York, pp 428–433

    Google Scholar 

  • Cunnane C (1989) Statistical distributions for flood frequency analysis. WMO No. 718, WMP, Geneva

    Google Scholar 

  • Diao YF, Wang BD, Liu J (2007) Study on distribution of flood forecasting errors by the method based on maximum entropy. J Hydrol Eng 38(5):591–595

    Google Scholar 

  • Fan YR, Huang W, Huang GH, Huang K, Zhou X (2015a) A PCM-based stochastic hydrological model for uncertainty quantification in watershed systems. Stoch Env Res Risk A 29(3):915–927

    Article  Google Scholar 

  • Fan YR, Huang W, Huang GH, Li Z, Li YP, Wang XQ, Cheng GH, Jin L (2015b) A stepwise-cluster forecasting approach for monthly streamflows based on climate teleconnections. Stoch Env Res Risk A. doi:10.1007/s00477-015-1048-y

    Google Scholar 

  • Farrel PJ, Stewart KR (2006) Comprehensive study of tests for normality and symmetry: extending the Spiegelhalter test. J Stat Comput Simul 76(9):803–816

    Article  Google Scholar 

  • Ganguli P, Reddy MJ (2013) Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol 111(1-2):341–360

    Article  Google Scholar 

  • Gebregiorgis AS, Hossain F (2012) Hydrological risk assessment of old dams: case study on Wilson dam of Tennessee River basin. J Hydrol Eng 17:201–212

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: a review and a power study. Insur: Math Econ 44:199–213

    Google Scholar 

  • Graler B, van den Berg MJ, Vandenberghe S, Petroselli A, Grimaldi S, De Baets B, Verhoest NEC (2013) Multivariate return periods in hydrology: a critical and practical review focusing on synthetic design hydrograph estimation. Hydrol Earth Syst Sci 17:1281–1296

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006) Asymmetric copula in multivariate flood frequency analysis. Adv Water Resour 29:1281–1296

    Article  Google Scholar 

  • Gringorten II (1963) A plotting rule of extreme probability paper. J Geophys Res 68(3):813–814

    Article  Google Scholar 

  • Han JC, Huang GH, Zhang H, Li Z, Li YP (2014) Bayesian uncertainty analysis in hydrological modeling associated with watershed subdivision level: a case study of SLURP model applied to the Xiangxi River watershed, China. Stoch Env Res Risk A 28(4):973–989

    Article  Google Scholar 

  • Hao Z, Singh VP (2011) Single-site monthly streamflow simulation using entropy theory. Water Resour Res 47(9), W09528. doi:10.1029/2010WR010208

    Article  Google Scholar 

  • Hao Z, Singh VP (2012) Entropy-copula method for single-site monthly streamflow simulation. Water Resour Res 48(6), W06604. doi:10.1029/2011WR011419

    Article  Google Scholar 

  • Huang GH, Cohen SJ, Yin YY (1996) Incorporation of inexact dynamic optimization with fuzzy relation analysis for integrated climate change impact study. J Environ Manag 48(1):45–68

    Article  Google Scholar 

  • Huang K, Dai LM, Yao M, Fan YR, Kong XM (2015) Modelling dependence between traffic noise and traffic flow through an entropy-copula method. J Environ Inform. doi:10.3808/jei.201500302

    Google Scholar 

  • Jaynes ET (1957a) Information theory and statistical mechanics. Phys Rev 106(4):620. doi:10.1103/PhysRev.106.620

    Article  Google Scholar 

  • Jaynes ET (1957b) Information theory and statistical mechanics. II. Phys Rev 108(2):171. doi:10.1103/PhysRev.108.171

    Article  Google Scholar 

  • Jaynes ET (1982) On the rationale of maximum-entropy methods. Proc IEEE 70(9):939–952. doi:10.1109/PROC.1982.12425

    Article  Google Scholar 

  • Kao SC, Govindaraju RS (2010) A copula-based joint deficit index for droughts. J Hydrol 380:121–134

    Article  Google Scholar 

  • Kapur JN, (1989). Maximum-entropy Models in Science and Engineering, John Wiley and Sons

  • Kapur JN, Kesavan HK (1992) Entropy optimization principles with applications. Academic, New York

    Book  Google Scholar 

  • Karmakar S, Simonovic SP (2009) Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2:32–44

    Article  Google Scholar 

  • Kidson R, Richards KS (2005) Flood frequency analysis: assumption and alternatives. Prog Phys Geogr 29(3):392–410

    Article  Google Scholar 

  • Kite GW (1988) Frequency and risk analysis in water resources. Water Resources Publications, Littleton

    Google Scholar 

  • Kong XM, Huang GH, Fan YR, Li YP (2015) Maximum entropy-Gumbel-Hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stoch Env Res Risk A 29:833–846

    Article  Google Scholar 

  • Lee T, Salas JD (2011) Copula-based stochastic simulation of hydrological data applied to Nile River flows. Hydrol Res 42(4):318–330

    Article  Google Scholar 

  • Li HS (2013) Maximum entropy method for probabilistic bearing strength prediction of pin joints in composite laminates. Compos Struct 106:626–634

    Article  Google Scholar 

  • Li YP, Huang GH, Nie SL (2008) Inexact multistage stochastic integer programming for water resources management under uncertainty. J Environ Manag 88(1):93–107

    Article  Google Scholar 

  • Liu M, Xu X, Sun AY, Wang K, Liu W, Zhang X (2014) Is southwestern China experiencing more frequent precipitation extremes? Environ Res Lett 9:064002

    Article  Google Scholar 

  • Ma M, Song S, Ren L, Jiang S, Song J (2013) Multivariate drought characteristics using trivariate Gaussian and Student copula. Hydrol Process 27:1175–1190

    Article  Google Scholar 

  • Ma ZZ, Wang ZJ, Xia T, Gippel CJ, Speed R (2014) Hydrograph-based hydrologic alteration assessment and its application to the Yellow River. J Environ Inform 23(1):1–13

    Article  Google Scholar 

  • Maruyama T, Kawachi T, Singh VP (2005) Entropy-based assessment and clustering of potential water resources availability. J Hydrol 309:104–113

    Article  Google Scholar 

  • Massey JF (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    Google Scholar 

  • Papalexiou SM, Koutsoyiannis D (2012) Entropy based deviation of probability distributions: a case study to daily rainfall. Adv Water Resour 45:51–57

    Article  Google Scholar 

  • Rahmani MA, Zarghami M (2015) The use of statistical weather generator, hybrid data driven and system dynamics models for water resources management under climate change. J Environ Inform 25(1):23–35

    Article  Google Scholar 

  • Razali NM, Wah YB (2011) Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J Stat Model Analytics 2(1):21–33

    Google Scholar 

  • Reddy JM, Ganguli P (2012) Bivariate flood frequency analysis of upper Godavari river flows using Archimedean copulas. Water Resour Manag 26(14):3995–4018

    Article  Google Scholar 

  • Rosenblatt M (1952) Remarks on a multivariate transformation. Ann Math Stat 23(3):470–472

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copula. Springer, Dordrencht, p 292

    Google Scholar 

  • Salvadori G, De Michele C, Durante F (2011) On the return period and design in a multivariate framework. Hydrol Earth Syst Sci 15:3293–3305

    Article  Google Scholar 

  • Scholz FW, Stephens MA (1987) K-sample Anderson–Darling tests. J Am Stat Assoc 82(399):918–924

    Google Scholar 

  • Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27(7):379–423. doi:10.1002/j.1538-7305.1948.tb01338.x

    Article  Google Scholar 

  • Singh VP (1997) The use of entropy in hydrology and water resources. Hydrol Process 11(6):587–626

    Article  Google Scholar 

  • Singh VP (2011) Hydrologic synthesis using entropy theory: review. J Hydrol Eng 16(5):421–433

    Article  Google Scholar 

  • Song S, Singh VP (2010) Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stoch Env Res Risk A 24(3):425–444

    Article  Google Scholar 

  • Sraj M, Bezak N, Brilly M (2014) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process. doi:10.1002/hyp.10145

    Google Scholar 

  • Vandenberghe S, Verhoest NEC, De Baets B. (2010). Fitting bivariate copulas to the dependence structure between storm characteristics: a detailed analysis based on 105 year 10 min rainfall. Water Resources Research, 46. doi:10.1029/2009wr007857

  • Wang LZ, Huang YF, Wang L, Wang GQ (2014) Pollutant flushing characterization of storm water runoff and their correlation with land use in a rapidly urbanizing watershed. J Environ Inform 23(1):37–43

    Article  Google Scholar 

  • Water Conservancy Bureau of Xingshan (2004) Water conservancy annuals of Xingshan, 1949–2003. Xingshan, Hubei, China

    Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(1):79

    Article  Google Scholar 

  • Wu ZY, Lu GH, Liu ZY, Wang JX, Xiao H (2013) Trends of extreme flood events in the Pearl river basin during 1951-2010. Adv Clim Chang Res 4(2):110–116

    Article  Google Scholar 

  • Xu H, Taylor RG, Kinston DG, Jiang T, Thompson JR, Todd MC (2010) Hydrological modeling of River Xiangxi using SWAT2005: a comparison of model parameterizations using station and gridded meteorological observations. Quat Int 226:54–59

    Article  Google Scholar 

  • Ye L, Cai Q, Liu R, Cao M (2009) The influence of topography and land use on water quality of Xiangxi River in Three Gorges Reservoir region. Environ Geol 58(5):937–942

    Article  Google Scholar 

  • Yen BC (1970) Risk Analysis in design of engineering projects. J Hydrol Eng 96(4):959–966

    Google Scholar 

  • Yue S (2000) The bivariate lognormal distribution to model a multivariate flood episode. Hydrol Process 14(14):2575–2588

    Article  Google Scholar 

  • Yue S (2001) A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrol Process 15(6):1033–1045

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11:150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 332(1–2):93–109

    Article  Google Scholar 

  • Zhang L, Singh VP (2012) Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy 14:1784–1812

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Sciences Foundation (51,190,095, 51225904), the 111 Project (B14008), and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y.R., Huang, W.W., Huang, G.H. et al. Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area, China. Theor Appl Climatol 125, 381–397 (2016). https://doi.org/10.1007/s00704-015-1505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-015-1505-z

Keywords

Navigation