Skip to main content

Advertisement

Log in

Sea level rise and storm surge effects in a coastal heterogeneous aquifer: a 2D modelling study in northern Germany

Effekte von Meerwasseranstieg und Sturmfluten in einem Küstenaquifer: eine 2D Modellierstudie in Norddeutschland

  • Fachbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Abstract

Climate change will affect coastal groundwater resources due to the mean sea level rise (MSLR) and an increase in storm intensity and frequency. Increasing saltwater intrusion from the subsurface as well as intrusion into aquifers from land-surface storm surges can be expected. We numerically investigate the impacts of MSLR and storm surge events in a 2D cross-sectional aquifer at the North-German coast using the coupled surface-subsurface approach of the HydroGeoSphere model. Aquifer heterogeneity is considered to investigate the influence of heterogeneity on the migration of salt plumes in the aquifer. A 1 m MSLR causes the saltwater/freshwater interface to migrate up to 1250 m landward, and the salinized area of the aquifer to expand up to 2050 m landward. Results from a storm surge simulation show that salt plume fingers develop below the flooded land surface, however, the fate of the salt plumes is highly dependent on the hydraulic conductivity of the subsurface.

Zusammenfassung

Der Klimawandel wird küstennahe Grundwasserressourcen beeinträchtigen. Dies wird einerseits durch den Anstieg des Meeresspiegels geschehen, was zu einer Zunahme der Salzwasserintrusion in einen küstennahen Aquifer führt. Andererseits werden die Intensität und Frequenz von Sturmfluten zunehmen, und es kann zu vermehrter Überspülung von Salzwasser über Deiche kommen. In der Folge wird das Salzwasser der Sturmfluten in den Untergrund infiltrieren und küstennahes Grundwasser kontaminieren. Mit dem numerischen Modell HydroGeoSphere untersuchen wir den Einfluss des steigenden Meeresspiegels und den Einfluss von Sturmfluten auf die Grundwasserressourcen einer norddeutschen Küstenregion. an der Oberflächenabfluss und Strömung im Untergrund können in diesem Modell vollständig gekoppelt werden. In den Simulationen wird die Heterogenität des Aquifers berücksichtigt, um deren Einfluss auf den Salztransport im Aquifer zu untersuchen. Ein Meeresspiegelanstieg von 1 m führt zu einem Versatz der Salzwasser/Süßwasser-Grenze um 1250 m landwärts und zu einer Vergrößerung der versalzenen Aquiferbreite um bis zu 2.050 m. Ergebnisse einer Sturmflut- Simulation zeigen, dass sich unter der überfluteten Landoberfläche Salzfinger bilden. Der Salztransport ist wesentlich von den hydraulischen Leitfähigkeiten des heterogenen Untergrundes abhängig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, W.P. Jr., Lauer, R.M.: The role of overwash in the evolution of mixing zone morphology within barrier islands. Hydrogeol. J. 16(8), 1483–1495 (2008)

    Article  Google Scholar 

  • Chini, N., Stansby, P.K.: Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coast. Eng. 65, 2737 (2012)

    Article  Google Scholar 

  • Chow, V.T.: Open-Channel Hydraulics, 680 pp. McGraw-Hill, New York (1959)

    Google Scholar 

  • Chui, T.F.M., Terry, J.P.: Modeling freshwater lens damage and recovery on atoll islands after storm-wave washover. Ground Water. 50, 412–420 (2011)

    Article  Google Scholar 

  • Chui, T.F.M., Terry, J.P.: Influence of sea-level rise on freshwater lenses of different atoll island sizes and lens resilience to storm-induced salinization. J. Hydrol. 502, 1826 (2013)

    Google Scholar 

  • EurOtop: Wave overtopping of sea defences and related structures: assessment manual. Die Küste—Archive for research and technology on the North Sea and Baltic Sea coast. Kuratorium Forsch. Küsteningenieurwesen. 73, 178 (2007)

    Google Scholar 

  • Gelhar, L.W., Welty, C., Rehfeldt, K.R.: A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28(7), 1955–1974 (1992)

    Article  Google Scholar 

  • Giambastiani, B.M.S., Antonellini, M., Oude Essink, G.H.P., Stuurman, R.J.: Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. J. Hydrol. 340, 91–104 (2007)

    Article  Google Scholar 

  • Gönnert, G., Dube, S.K., Murty, T., Siefert, W.: Global storm surges, Die Küste—Archive for research and technology on the North Sea and Baltic Sea coast. Kuratorium Forsch. Küsteningenieurwesen. 63, 623 (2001)

    Google Scholar 

  • Graf, T., Simmons, C.T., Boufadel, M.C., Neuweiler, I.: Movement of dense plumes in variably saturated porous media: numerical model and results. Proceedings of the XVIII International Conference on Water Resources (CMWR), Barcelona, Spain, June 2010. Abstract 23 (2010)

  • Guo, W., Langevin, C.: Users guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geological Survey Open-File Report 01-434 (2002)

  • Henry, H.R.: Effects of dispersion on salt encroachment in coastal aquifers, sea water in coastal aquifers. US Geol. Surv. Water Supply Pap. 1613-C, 70–84 (1964)

    Google Scholar 

  • Illangasekare, T., Tyler, S.W., Clement, T.P., Villholth, K.G., Perera, A.P.G.R.L., Obeysekera, J.: Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour. Res. 42, W05201 (2007)

    Google Scholar 

  • Kooi, H., Groen, J., Leijnse, A.: Modes of seawater intrusion during transgressions. Water Resour. Res. 36, 3581–3589 (2000)

    Article  Google Scholar 

  • Langevin, C., Swain, E., Wolfert, M.: Simulation of integrated surface water/ground-water flow and salinity for a coastal wetland and adjacent estuary. J. Hydrol. 314, 212–234 (2005)

    Article  Google Scholar 

  • Landerer, F., Jungclaus, J.H., Marotzke, J.: Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr. 37 (2), 296–312 (2007)

    Article  Google Scholar 

  • LBEG – Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover: Untere Wester Lockergestein rechts -geologischer Schnitt. http://nibis.lbeg.de/cardomap3/. Accessed 8 March 2008.

  • Leendertse, J.J.: Aspects of SIMSYS2D, a system for two dimensional flow computation. R and Corporation Report R-3572-USGS, Santa Monica, CA, 80 pp (1987)

  • Li, H., Boufadel, M.C.: Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat. Geosc. 3, 96–99 (2010)

    Article  Google Scholar 

  • Li, H., Boufadel, M.C.: A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil. Mar. Pollut. Bull. 62, 1261–1269 (2011)

    Article  Google Scholar 

  • Manning, R.: On the flow of water in open channels and pipes. Trans. Inst. Civ. Engineers Irel. 20, 161–207 (1891)

    Google Scholar 

  • Narayan, K.A., Schleeberger, C., Bristow, K.L.: Modelling seawater intrusion in the Burdekin Delta irrigation area, North Queensland, Australia. Agr. Water Manage. 89, 217–228 (2007)

    Article  Google Scholar 

  • NLfB – Niedersächsischen Landesamtes für Bodenforschung: Grundwasser- und Geotechnische Planungskarte Bremerhaven, Karte B, 1:10000 [map]. NLfB, Bremen (2002)

    Google Scholar 

  • NLfB – Niedersächsischen Landesamtes für Bodenforschung: Grundwasser- und Geotechnische Planungskarte Bremerhaven, Beiheft [map]. NLfB, Bremen (2003)

    Google Scholar 

  • NLfB – Niedersächsischen Landesamtes für Bodenforschung: Geofakten 21: Hydrostratigrafische Gliederung Niedersachsens. NLfB, Bremen (2005a)

    Google Scholar 

  • NLfB – Niedersächsischen Landesamtes für Bodenforschung: Auszug aus dem gemeinsamen Bericht 2005/Grundwasser, Anhang 2 “Beschreibung der hydrogeologischen Teilräume” der Länder Niedersachsen und Bremen. NLfB, Bremen (2005b)

    Google Scholar 

  • Oude Essink, G.H.P., van Baaren, E.S., de Louw, P.G.B.: Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour. Res. 46, W00F04 (2010)

    Article  Google Scholar 

  • Paniconi, C., Khlaifi, I., Lecca, G., Giacomelli, A., Tarhouni, J.: Modeling and analysis of seawater intrusion in the coastal aquifer of Eastern CapBon, Tunisia. Transport Porous Med. 43, 3–28 (2001)

    Article  Google Scholar 

  • Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson (eds), C.E.: Climate Change 2007: impacts, adaptation and vulnerability, contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press 976, Cambridge (2007)

  • Therrien, R., McLaren, R., Sudicky, E., Panday, S.: HydroGeoSphere—A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport. University of Waterloo and Université Laval, Canada (2010)

    Google Scholar 

  • Vanderkwaak, J.: Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. Ph.D. Thesis in Earth Sciences, University of Waterloo, Waterloo, Ontario, Canada, 217 pp (1999)

  • van Genuchten, M.T.: A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Vermeer, M., Rahmstorf, S.: Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 106(51), 21527–21532 (2009)

    Article  Google Scholar 

  • Viessman, W. Jr., Lewis, G.L.: Introduction to Hydrology. 4th edn. Harper Collins College Publisher, New York, 760 pp (1996)

    Google Scholar 

  • Violette, S., Boulicot, G., Gorelick, S.M.: Tsunami-induced groundwater salinization in southeastern India. C. R. Geosci. 341, 339–346 (2009)

    Article  Google Scholar 

  • Vithanage, M., Engesgaard, P., Jensen, K.H., Illangasekare, T.H., Obeyseker, J.: Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event. J. Contam. Hydrol. 136–137, 10–24 (2012)

    Article  Google Scholar 

  • Von Storch, H., Doerffer, J., Meinke, I.: Die deutsche Nordseeküste und der Klimawandel. In Ratter, B.M.W. (ed.) Hamburger Symposium Geographie, vol. 1, Universität Hamburg, pp. 9–22 (2009)

  • Voss, C.I.: SUTRA: a finite-element simulation model for saturated-unsaturated fluid density-dependent groundwater flow with energy transport or chemically reactive single-species solute transport. US Geological Survey Water-Resources Investigations Report, vols. 84–4369, 409 pp. USGS Publications Warehouse (1984)

  • Voss, C.I., Souza, W.R.: Variable density flow and transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 26, 2097–2106 (1987)

    Google Scholar 

  • Walther, M., Delfs, J.O., Grundmann, J., Kolditz, O., Liedl, R.: Saltwater intrusion modeling: Verification and application to an agricultural coastal arid region in Oman. J. Comput. Appl. Math. 236, 4798–4809 (2012)

    Article  Google Scholar 

  • Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., Barry, D.A.: Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013)

    Article  Google Scholar 

  • Woth, K., von Storch, H.: Klima im Wandel: Mögliche Zukünfte des Norddeutschen Küstenklimas. Dithmarschen Landeskunde-Kultur Natur. 1/2008, 20–31 (2008)

    Google Scholar 

  • Yang, J., Graf, T., Herold, M., Ptak, T.: Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach. J. Contam. Hydrol. 149, 61–75 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant number GR 3463/2−1. We thank the editorial board of Grundwasser (Gudrun Massmann, Tania Röper) for handling our manuscript. We also thank two anonymous reviewers whose constructive comments have helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Graf, T. & Ptak, T. Sea level rise and storm surge effects in a coastal heterogeneous aquifer: a 2D modelling study in northern Germany. Grundwasser 20, 39–51 (2015). https://doi.org/10.1007/s00767-014-0279-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-014-0279-z

Keywords

Navigation