Skip to main content
Log in

Development of realistic models for Double Metal Cyanide catalyst active sites

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Realistic molecular models of one and two-centre catalytic active sites originating from the cleavage of a precursor material known to give rise to an active double metal cyanide catalyst are described. Via periodic density functional calculations the structure of the proposed catalytic sites are shown to be dependent on electrostatic and structural relaxation processes occurring at the surfaces of the precursor material. It is shown how these effects may be adequately captured by small molecular models of the active sites. The general methodology proposed should provide a computationally efficient basis for detailed future studies into catalytic reactions over double metal cyanide materials.

Reconstructed DMC [100]-surface: electrostatic potential mapped on charge density isosurface

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Referencesz

  1. Kuyper J, Boxhoorn GJ (1987) Catal 105:163–174

    Article  CAS  Google Scholar 

  2. Huang YJ, Qi GR, Chen LS (2003) Appl Catal A 240:263–271

    Article  CAS  Google Scholar 

  3. Chen S, Xu N, Shi J (2004) Prog Org Coat 49:125–129

    Article  CAS  Google Scholar 

  4. Kim I, Ahn J-T, Lee S-H, Ha C-S, Park D-W (2004) Catal Today 93–95:511–516

    Article  CAS  Google Scholar 

  5. O’Connor JM, Lickei DL (2000) Polyols derived from Double Metal Cyanide catalysts. In Proceedings of UTECH 2000, pp 6/1–6/9, The Hague, Rapra Conference Proceedings, 2000

  6. Kim I, Ahn J-T, Park D-W, Lee S-H, Park I (2003) Stud Surf Sci Catal 145:529–530

    Article  CAS  Google Scholar 

  7. Le-Khac B (2000) Arco Chemical Technology, LP US Patent 6,018,017

  8. Kim I, Yi MJ, Byun SH, Park DW, Kim BU, Ha CS (2005) Macromol Symp 224:181–192

    Article  CAS  Google Scholar 

  9. Hua Z, Qi G, Chen S (2004) J Appl Polym Sci 93:1788–1792

    Article  CAS  Google Scholar 

  10. Kim I, Ahn J-T, Ha CS, Yang CS, Park I (2003) Polymer 44:3417–3428

    Article  CAS  Google Scholar 

  11. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  12. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  13. CPMD, Copyright IBM Corp 1990–2004, Copyright MPI für Festkörperforschung Stuttgart 1997–2001

  14. CAMP open software project, http://www.fysik.dtu.dk/CAMPOS/

  15. Tasker PW (1979) J Phys C 12:4977–4984

    Article  CAS  Google Scholar 

  16. Noguera C (2000) J Phys-Condens Mat 12:R367–R410

    Article  CAS  Google Scholar 

  17. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratman RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu C, Liashenko A, Piskorz P, Komaromi, I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzales C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, Pittsburgh PA

    Google Scholar 

  20. Guest M, Bush IJ, van Dam H, Sherwood P, Thomas J, van Lenthe J, Havenith R, Kendrick J (2005) Mol Phys 103:719–747

    CAS  Google Scholar 

  21. Bader RFW, Beddall PM, Cade PE (1971) J Am Chem Soc 93:3095–3107

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been financed by Shell Chemicals, Amsterdam as a part of “Application of Molecular Modeling to Catalysis Development” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan T. Bromley.

Additional information

This work has been originally presented on the Modelling and Design of Molecular Materials conference in Wrocław, Poland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojdeł, J.C., Bromley, S.T., Illas, F. et al. Development of realistic models for Double Metal Cyanide catalyst active sites. J Mol Model 13, 751–756 (2007). https://doi.org/10.1007/s00894-007-0218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-007-0218-3

Keywords

Navigation