Skip to main content

Advertisement

Log in

Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA)

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Since the recognition of HIV-1 integrase as a novel and rational target for HIV therapeutics, remarkable progress has been made in the development of integrase inhibitors. Computational techniques have played a critical role in accelerating research in this area. However, most previous computational studies were based solely on ligand information. In the present work, we describe the application of one of our recently developed receptor-based 3D-quantitative structure activity relationships (QSAR) methods, i.e. comparative residue interaction analysis (CoRIA), in exploring the events involved in ligand-integrase binding. In this methodology, the non-bonded interaction energies (van der Waals and Coulombic) of the inhibitors with individual active site residues of the integrase enzyme are calculated and, along with other thermodynamic descriptors, are correlated with biological activity using chemometric methods. Different combinations of descriptors were used to develop three types of QSAR models, all of which were found to be statistically significant by internal and external validation. This is the first report of such a dedicated receptor-based 3D-QSAR approach being applied to comprehend the integrase–inhibitor recognition process. In addition, the study was performed on 13-different series of inhibitors, thereby exploring the most structurally diverse data set ever used in understanding the inhibition of HIV-1 integrase. The major advantage of this technique is that it can quantitatively extract crucial residues and identify the nature of interactions between the ligand and receptor that modulate activity. The models suggest that Asp64, Thr66, Val77, Asp116, Glu152 and Lys159 are the key residues influencing the binding of ligands with the integrase enzyme, and the majority of these results are in line with earlier studies. The approach facilitates easy lead-to-hit conversion and design of novel inhibitors by optimisation of the interaction of ligands with these specific residues of the integrase enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gottlieb MS, Schroff R, Schanker HM et al (1981) Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency. N Engl J Med 305:1425–1430

    CAS  Google Scholar 

  2. Masur H, Michelis MA, Greene JB et al (1981) An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med 305:1431–1438

    CAS  Google Scholar 

  3. Siegal FP, Lopez C, Hammer GS et al (1981) Severe acquired immunodeficiency in male homosexuals, manifested by chronic perianal ulcerative herpes simplex lesions. N Engl J Med 305:1439–1444

    CAS  Google Scholar 

  4. UNAIDS/WHO, AIDS Epidemic Update, 2007, WHO, Geneva

  5. Richman DD (2001) HIV chemotherapy. Nature 410:995–1001. doi:10.1038/35073673

    CAS  Google Scholar 

  6. Carr A (2003) Toxicity of antiretroviral therapy and implications for drug development. Nat Rev Drug Discov 2:624–634. doi:10.1038/nrd1151

    CAS  Google Scholar 

  7. Jain RG, Furfine ES, Pedneault L et al (2001) Metabolic complications associated with antiretroviral therapy. Antiviral Res 51:151–177. doi:10.1016/S0166-3542(01)00148-6

    CAS  Google Scholar 

  8. Mansky LM (2002) HIV mutagenesis and the evolution of antiretroviral drug resistance. Drug Resist Updat 5:219–223. doi:10.1016/S1368-7646(02)00118-8

    CAS  Google Scholar 

  9. Pommier Y, Johnson AA, Marchand C (2005) Integrase inhibitors to treat HIV/AIDS. Nat Rev Drug Discov 4:236–248. doi:10.1038/nrd1660

    CAS  Google Scholar 

  10. Thomas M, Brady L (1997) HIV integrase: a target for AIDS therapeutics. Trends Biotechnol 15:167–172. doi:10.1016/S0167-7799(97)01016-0

    CAS  Google Scholar 

  11. d’Angelo J, Mouscadet JF, Desmaele D et al (2001) HIV-1 integrase: the next target for AIDS therapy? Pathol Biol 49:237–246. doi:10.1016/S0369-8114(01)00135-3

    CAS  Google Scholar 

  12. Pluymers W, Clercq ED, Debyser Z (2001) HIV-1 integration as a target for antiretroviral therapy: a review. Curr Drug Targets Infect Disord 1:133–149. doi:10.2174/1568005014606044

    CAS  Google Scholar 

  13. Pommier Y, Marchand C, Neamati N (2000) Retroviral integrase inhibitors year 2000: update and perspectives. Antiviral Res 47:139–148. doi:10.1016/S0166-3542(00)00112-1

    CAS  Google Scholar 

  14. Anker M, Corales RB (2008) Raltegravir (MK-0518): a novel integrase inhibitor for the treatment of HIV infection. Expert Opin Investig Drugs 17:97–103. doi:10.1517/13543784.17.1.97

    CAS  Google Scholar 

  15. Rowley M (2008) The discovery of raltegravir, an integrase inhibitor for the treatment of HIV infection. Prog Med Chem 46:1–28. doi:10.1016/S0079-6468(07)00001-X

    CAS  Google Scholar 

  16. Nicklaus MC, Neamati N, Hong H et al (1997) HIV-1 integrase pharmacophore: discovery of inhibitors through three-dimensional database searching. J Med Chem 40:920–929. doi:10.1021/jm960596u

    CAS  Google Scholar 

  17. Hong H, Neamati N, Wang S et al (1997) Discovery of HIV-1 integrase inhibitors by pharmacophore searching. J Med Chem 40:930–936. doi:10.1021/jm960754h

    CAS  Google Scholar 

  18. Neamati N, Hong H, Mazumder A et al (1997) Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. J Med Chem 40:942–951. doi:10.1021/jm960759e

    CAS  Google Scholar 

  19. Neamati N, Hong H, Sunder S et al (1997) Potent inhibitors of human immunodeficiency virus type 1 integrase: identification of a novel four-point pharmacophore and tetracyclines as novel inhibitors. Mol Pharmacol 52:1041–1055

    CAS  Google Scholar 

  20. Barreca ML, Rao A, De Luca L et al (2004) Efficient 3D database screening for novel HIV-1 IN inhibitors. J Chem Inf Comput Sci 44:1450–1455. doi:10.1021/ci034296e

    CAS  Google Scholar 

  21. Barreca ML, Ferro S, Rao A et al (2005) Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors. J Med Chem 48:7084–7088. doi:10.1021/jm050549e

    CAS  Google Scholar 

  22. Mustata GI, Brigo A, Briggs JM (2004) HIV-1 integrase pharmacophore model derived from diverse classes of inhibitors. Bioorg Med Chem Lett 14:1447–1454. doi:10.1016/j.bmcl.2004.01.027

    CAS  Google Scholar 

  23. Dayam R, Sanchez T, Clement O et al (2005) Beta-diketo acid pharmacophore hypothesis. 1. Discovery of a novel class of HIV-1 integrase inhibitors. J Med Chem 48:111–120. doi:10.1021/jm0496077

    CAS  Google Scholar 

  24. Dayam R, Sanchez T, Neamati N (2005) Diketo acid pharmacophore. 2. Discovery of structurally diverse inhibitors of HIV-1 integrase. J Med Chem 48:8009–8015. doi:10.1021/jm050837a

    CAS  Google Scholar 

  25. Carlson HA, Masukawa KM, Rubins K et al (2000) Developing a dynamic pharmacophore model for HIV-1 integrase. J Med Chem 43:2100–2114. doi:10.1021/jm990322h

    CAS  Google Scholar 

  26. Deng J, Lee KW, Sanchez T et al (2005) Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J Med Chem 48:1496–1505. doi:10.1021/jm049410e

    CAS  Google Scholar 

  27. Deng J, Sanchez T, Neamati N et al (2006) Dynamic pharmacophore model optimization: identification of novel HIV-1 integrase inhibitors. J Med Chem 49:1684–1692. doi:10.1021/jm0510629

    CAS  Google Scholar 

  28. Buolamwini JK, Raghavan K, Fesen MR et al (1996) Application of the electrotopological state index to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors. Pharm Res 13:1892–1895. doi:10.1023/A:1016005813432

    CAS  Google Scholar 

  29. Marrero-Ponce Y (2004) Linear indices of the “molecular pseudograph’s atom adjacency matrix”: definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors. J Chem Inf Comput Sci 44:2010–2026. doi:10.1021/ci049950k

    CAS  Google Scholar 

  30. Cyrillo M, Galvão DS (1999) Structure–activity relationship study of some inhibitors of HIV-1 integrase. J Mol Struc-Theochem 464:267–272. doi:10.1016/S0166-1280(98)00558-2

    CAS  Google Scholar 

  31. Yuan H, Parrill AL (2000) QSAR development to describe HIV-1 integrase inhibition. J Mol Struct Theochem 592:273–282. doi:10.1016/S0166-1280(00)00553-4

    Google Scholar 

  32. Makhija MT, Kulkarni VM (2002) QSAR of HIV-1 integrase inhibitors by genetic function approximation method. Bioorg Med Chem 10:1483–1497. doi:10.1016/S0968-0896(01)00415-1

    CAS  Google Scholar 

  33. Yuan H, Parrill AL (2002) QSAR studies of HIV-1 integrase inhibition. Bioorg Med Chem 10:4169–4183. doi:10.1016/S0968-0896(02)00332-2

    CAS  Google Scholar 

  34. Filimonov DA, Akimov DV, Poroikov VV (2004) The method of self-consistent regression for the quantitative analysis of relationships between structure and properties of chemicals. Pharm Chem J 38:21–24. doi:10.1023/B:PHAC.0000027639.17115.5d

    CAS  Google Scholar 

  35. Verma RP, Hansch C (2004) An approach towards the quantitative structure-activity relationships of caffeic acid and its derivatives. ChemBioChem 5:1188–1195. doi:10.1002/cbic.200400094

    CAS  Google Scholar 

  36. Raghavan K, Buolamwini JK, Fesen MR et al (1995) Three-dimensional quantitative structure-activity relationship (QSAR) of HIV integrase inhibitors: a comparative molecular field analysis (CoMFA) study. J Med Chem 38:890–897. doi:10.1021/jm00006a006

    CAS  Google Scholar 

  37. Ma XH, Zhang XY, Tan JJ et al (2004) Exploring binding mode for styrylquinoline HIV-1 integrase inhibitors using comparative molecular field analysis and docking studies. Acta Pharmacol Sin 25:950–958

    CAS  Google Scholar 

  38. Makhija MT, Kulkarni VM (2002) 3D-QSAR and molecular modelling of HIV-1 integrase inhibitors. J Comput Aided Mol Des 16:181–200. doi:10.1023/A:1020137802155

    CAS  Google Scholar 

  39. Makhija MT, Kulkarni VM (2001) Molecular electrostatic potentials as input for the alignment of HIV-1 integrase inhibitors in 3D QSAR. J Comput Aided Mol Des 15:961–978. doi:10.1023/A:1014888730876

    CAS  Google Scholar 

  40. Makhija MT, Kulkarni VM (2001) Eigen value analysis of HIV-1 integrase inhibitors. J Chem Inf Comput Sci 41:1569–1577. doi:10.1021/ci0001334

    CAS  Google Scholar 

  41. Kuo CL, Assefa H, Kamath S et al (2004) Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors. J Med Chem 47:385–399. doi:10.1021/jm030378i

    CAS  Google Scholar 

  42. Buolamwini JK, Assefa H (2002) CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: exploration of a binding mode at the active site. J Med Chem 45:841–852. doi:10.1021/jm010399h

    CAS  Google Scholar 

  43. Daeyaert FFD, Vinkers M, De Jonge MR et al (2004) Ligand-based computation of HIV-1 integrase inhibition strength within a series of β-ketoamide derivatives. Internet Electron J Mol Des 3:528–543

    CAS  Google Scholar 

  44. Yuan H, Parrill A (2005) Cluster analysis and three-dimensional QSAR studies of HIV-1 integrase inhibitors. J Mol Graph Model 23:317–328. doi:10.1016/j.jmgm.2004.10.003

    CAS  Google Scholar 

  45. Di Santo R, Costi R, Artico M et al (2005) Design, synthesis and biological evaluation of heteroaryl diketohexenoic and diketobutanoic acids as HIV-1 integrase inhibitors endowed with antiretroviral activity. Farmaco 60:409–417. doi:10.1016/j.farmac.2005.03.008

    Google Scholar 

  46. Iyer M, Hopfinger AJ (2007) Treating chemical diversity in QSAR analysis: modelling diverse HIV-1 integrase inhibitors using 4D fingerprints. J Chem Inf Model 47:1945–1960. doi:10.1021/ci700153g

    CAS  Google Scholar 

  47. Leonard JT, Roy K (2008) Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors. Eur J Med Chem 43:81–92. doi:10.1016/j.ejmech.2007.02.021

    CAS  Google Scholar 

  48. Niedbala H, Polanski J, Gieleciak R et al (2006) Comparative molecular surface analysis (CoMSA) for virtual combinatorial library screening of styrylquinoline HIV-1 blocking agents. Comb Chem High Throughput Screen 9:753–770. doi:10.2174/138620706779026042

    CAS  Google Scholar 

  49. Saiz-Urra L, Gonzalez MP, Fall Y et al (2007) Quantitative structure-activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors. Eur J Med Chem 42:64–70. doi:10.1016/j.ejmech.2006.08.005

    CAS  Google Scholar 

  50. Nunthaboot N, Tonmunphean S, Parasuk V et al (2006) Three-dimensional quantitative structure: activity relationship studies on diverse structural classes of HIV-1 integrase inhibitors using CoMFA and CoMSIA. Eur J Med Chem 41:1359–1372. doi:10.1016/j.ejmech.2006.06.014

    CAS  Google Scholar 

  51. Sotriffer CA, Ni H, McCammon JA (2000) HIV-1 integrase inhibitor interactions at the active site: prediction of binding modes unaffected by crystal packing. J Am Chem Soc 122:6136–6137. doi:10.1021/ja001152x

    CAS  Google Scholar 

  52. Vajragupta O, Boonchoong P, Morris GM et al (2005) Active site binding modes of curcumin in HIV-1 protease and integrase. Bioorg Med Chem Lett 15:3364–3368. doi:10.1016/j.bmcl.2005.05.032

    CAS  Google Scholar 

  53. Keseru GM, Kolossvary I (2001) Fully flexible low-mode docking: application to induced fit in HIV integrase. J Am Chem Soc 123:12708–12709. doi:10.1021/ja0160086

    CAS  Google Scholar 

  54. Sotriffer CA, Ni H, McCammon JA (2000) Active site binding modes of HIV-1 integrase inhibitors. J Med Chem 43:4109–4117. doi:10.1021/jm000194t

    CAS  Google Scholar 

  55. Guenther S, Nair V (2002) Binding modes of two novel dinucleotide inhibitors of HIV-1 integrase. Bioorg Med Chem Lett 12:2233–2236. doi:10.1016/S0960-894X(02)00353-0

    CAS  Google Scholar 

  56. Dayam R, Neamati N (2004) Active site binding modes of the beta-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Bioorg Med Chem 12:6371–6381. doi:10.1016/j.bmc.2004.09.035

    CAS  Google Scholar 

  57. Schames JR, Henchman RH, Siegel JS et al (2004) Discovery of a novel binding trench in HIV integrase. J Med Chem 47:1879–1881. doi:10.1021/jm0341913

    CAS  Google Scholar 

  58. da Silva CH, Del Ponte G, Neto AF et al (2005) Rational design of novel diketoacid-containing ferrocene inhibitors of HIV-1 integrase. Bioorg Chem 33:274–284. doi:10.1016/j.bioorg.2005.03.001

    Google Scholar 

  59. Deng J, Kelley JA, Barchi JJ et al (2006) Mining the NCI antiviral compounds for HIV-1 integrase inhibitors. Bioorg Med Chem 14:3785–3792. doi:10.1016/j.bmc.2006.01.040

    CAS  Google Scholar 

  60. Long YQ, Jiang XH, Dayam R et al (2004) Rational design and synthesis of novel dimeric diketoacid-containing inhibitors of HIV-1 integrase: implication for binding to two metal ions on the active site of integrase. J Med Chem 47:2561–2573. doi:10.1021/jm030559k

    CAS  Google Scholar 

  61. Sechi M, Derudas M, Dallocchio R et al (2004) Design and synthesis of novel indole beta-diketo acid derivatives as HIV-1 integrase inhibitors. J Med Chem 47:5298–5310. doi:10.1021/jm049944f

    CAS  Google Scholar 

  62. Verschueren WG, Dierynck I, Amssoms KI et al (2005) Design and optimization of tricyclic phtalimide analogues as novel inhibitors of HIV-1 integrase. J Med Chem 48:1930–1940. doi:10.1021/jm049559q

    CAS  Google Scholar 

  63. Makhija MT, Kasliwal RT, Kulkarni VM et al (2004) De novo design and synthesis of HIV-1 integrase inhibitors. Bioorg Med Chem 12:2317–2333. doi:10.1016/j.bmc.2004.02.005

    CAS  Google Scholar 

  64. Lins RD, Briggs JM, Straatsma TP et al (1999) Molecular dynamics studies on the HIV-1 integrase catalytic domain. Biophys J 76:2999–3011

    Article  CAS  Google Scholar 

  65. Lins RD, Straatsma TP, Briggs JM (2000) Similarities in the HIV-1 and ASV integrase active sites upon metal cofactor binding. Biopolymers 53:308–315. doi:10.1002/(SICI)1097-0282(20000405)53:4<308::AID-BIP3>3.0.CO;2-H

    CAS  Google Scholar 

  66. Lins RD, Adesokan A, Soares TA et al (2000) Investigations on human immunodeficiency virus type 1 integrase/DNA binding interactions via molecular dynamics and electrostatics calculations. Pharmacol Ther 85:123–131. doi:10.1016/S0163-7258(99)00059-5

    CAS  Google Scholar 

  67. Ni H, Sotriffer CA, McCammon JA (2001) Ordered water and ligand mobility in the HIV-1 integrase-5CITEP complex: a molecular dynamics study. J Med Chem 44:3043–3047. doi:10.1021/jm010205y

    CAS  Google Scholar 

  68. Barreca ML, Lee KW, Chimirri A et al (2003) Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance. Biophys J 84:1450–1463

    CAS  Google Scholar 

  69. Brigo A, Lee KW, Iurcu Mustata G et al (2005) Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain. Biophys J 88:3072–3082. doi:10.1529/biophysj.104.050286

    CAS  Google Scholar 

  70. Brigo A, Lee KW, Fogolari F et al (2005) Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor. Proteins 59:723–741. doi:10.1002/prot.20447

    CAS  Google Scholar 

  71. Lee MC, Deng J, Briggs JM et al (2005) Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants. Biophys J 88:3133–3146. doi:10.1529/biophysj.104.058446

    CAS  Google Scholar 

  72. Wijitkosoom A, Tonmunphean S, Truong TN et al (2006) Structural and dynamical properties of a full-length HIV-1 integrase: molecular dynamics simulations. J Biomol Struct Dyn 23:613–624

    CAS  Google Scholar 

  73. Nunthaboot N, Pianwanit S, Parasuk V et al (2007) Computational studies of HIV-1 integrase and its nhibitors. Curr Computer-Aided Drug Des 3:160–190. doi:10.2174/157340907781695459

    CAS  Google Scholar 

  74. Almerico AM, Tutone M, Ippolito M et al (2007) Molecular modelling and QSAR in the discovery of HIV-1 integrase inhibitors. Curr Computer-Aided Drug Des 3:214–233. doi:10.2174/157340907781695468

    CAS  Google Scholar 

  75. Datar PA, Khedkar SA, Malde AK et al (2006) Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands. J Comput Aided Mol Des 20:343–360. doi:10.1007/s10822-006-9051-5

    CAS  Google Scholar 

  76. Khedkar SA, Malde AK, Coutinho EC (2007) Design of inhibitors of the MurF enzyme of Streptococcus pneumoniae using docking, 3D-QSAR, and de Novo Design. J Chem Inf Model 47:1839–1846. doi:10.1021/ci600568u

    CAS  Google Scholar 

  77. Verma J, Khedkar VM, Prabhu AS et al (2008) A comprehensive analysis of the thermodynamic events involved in ligand-receptor binding using CoRIA and its variants. J Comput Aided Mol Des 22:91–104. doi:10.1007/s10822-008-9172-0

    CAS  Google Scholar 

  78. Ortiz AR, Pisabarro TM, Gago F et al (1995) Prediction of drug binding affinities by comparative binding energy analysis. J Med Chem 38:2681–2691. doi:10.1021/jm00014a020

    CAS  Google Scholar 

  79. Gohlke H, Klebe G (2002) DrugScore meets CoMFA: adaptation of fields for molecular comparison (AFMoC) or how to tailor knowledge-based pair-potentials to a particular protein. J Med Chem 45:4153–4170. doi:10.1021/jm020808p

    CAS  Google Scholar 

  80. Zhao H, Neamati N, Mazumder A et al (1997) Arylamide inhibitors of HIV-1 integrase. J Med Chem 40:1186–1194. doi:10.1021/jm960449w

    CAS  Google Scholar 

  81. Meadows DC, Mathews TB, North TW et al (2005) Synthesis and biological evaluation of geminal disulfones as HIV-1 integrase inhibitors. J Med Chem 48:4526–4534. doi:10.1021/jm049171v

    CAS  Google Scholar 

  82. Zhao H, Neamati N, Hong H et al (1997) Coumarin-based inhibitors of HIV integrase. J Med Chem 40:242–249. doi:10.1021/jm960450v

    CAS  Google Scholar 

  83. Neamati N, Hong H, Owen JM et al (1998) Salicylhydrazine-containing inhibitors of HIV-1 integrase: implication for a selective chelation in the integrase active site. J Med Chem 41:3202–3209. doi:10.1021/jm9801760

    CAS  Google Scholar 

  84. Zhao H, Neamati N, Sunder S et al (1997) Hydrazide-containing inhibitors of HIV-1 integrase. J Med Chem 40:937–941. doi:10.1021/jm960755+

    CAS  Google Scholar 

  85. Neamati N, Turpin JA, Winslow HE et al (1999) Thiazolothiazepine inhibitors of HIV-1 integrase. J Med Chem 42:3334–3341. doi:10.1021/jm990047z

    CAS  Google Scholar 

  86. Dayam R, Sanchez T, Neamati N (2006) Discovery and structure-activity relationship studies of a unique class of HIV-1 integrase inhibitors. ChemMedChem 1:238–244. doi:10.1002/cmdc.200500018

    CAS  Google Scholar 

  87. Mazumder A, Raghavan K, Weinstein J et al (1995) Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem Pharmacol 49:1165–1170. doi:10.1016/0006-2952(95)98514-A

    CAS  Google Scholar 

  88. Mazumder A, Gazit A, Levitzki A et al (1995) Effects of tyrphostins, protein kinase inhibitors, on human immunodeficiency virus type 1 integrase. Biochemistry 34:15111–15122. doi:10.1021/bi00046a018

    CAS  Google Scholar 

  89. Neamati N, Mazumder A, Zhao H et al (1997) Diarylsulfones, a novel class of human immunodeficiency virus type 1 integrase inhibitors. Antimicrob Agents Chemother 41:385–393

    CAS  Google Scholar 

  90. Cerius2 version 4.6, Accelrys, San Diego, CA

  91. Sybyl version 7.1, Tripos, St. Louis, MO

  92. Halgren TA (1996) Merck Molecular Force Field. V. Extension of MMFF94 using experimental data, additional computational data and empirical rules. J Comput Chem 17:616–641. doi:10.1002/(SICI)1096-987X(199604)17:5/6<616::AID-JCC5>3.0.CO;2-X

    CAS  Google Scholar 

  93. Goldgur Y, Craigie R, Cohen GH et al (1999) Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc Natl Acad Sci USA 96:13040–13043. doi:10.1073/pnas.96.23.13040

    CAS  Google Scholar 

  94. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank. Nucleic Acids Res 28:235–242. doi:10.1093/nar/28.1.235

    CAS  Google Scholar 

  95. Sybyl version 6.9, Tripos, St. Louis, MO

  96. GOLD version 3.1, Cambridge Crystallographic Data Centre (CCDC), UK

  97. Maple JR, Hwang M-J, Stockfisch TP et al (1994) Derivation of class II force fields. I. Methology and quantum force field for the alkyl functional group and alkane molecules. J Comput Chem 15:162–182. doi:10.1002/jcc.540150207

    CAS  Google Scholar 

  98. InsightII version 2005L, Accelrys, San Diego, CA

  99. Still WC, Tempczyk A, Hawley RC et al (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129. doi:10.1021/ja00172a038

    CAS  Google Scholar 

  100. Quasar version 5.0, Biographics Laboratory 3R, Basel, Switzerland

  101. Searle MS, Williams DH (1992) The cost of conformational order: entropy changes in molecular associations. J Am Chem Soc 114:10690–10697. doi:10.1021/ja00053a002

    CAS  Google Scholar 

  102. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity relationships and quantitative structure-property relationships. J Chem Inf Comput Sci 34:854–866. doi:10.1021/ci00020a020

    CAS  Google Scholar 

  103. Wold S, Johansson E, Cocchi M (1993) PLS: Partial least squares projections to latent structures. In: Kubinyi H (ed) 3D QSAR in drug design: Theory, methods and applications. ESCOM Science, Leiden, pp 523–550

    Google Scholar 

  104. Richard D, Cramer RD III, Bunce JD et al (1988) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct Act Relat 7:18–25. doi:10.1002/qsar.19880070105

    Google Scholar 

  105. Lee DJ, Robinson WE Jr (2006) Preliminary mapping of a putative inhibitor-binding pocket for human immunodeficiency virus type 1 integrase inhibitors. Antimicrob Agents Chemother 50:134–142. doi:10.1128/AAC.50.1.134-142.2006

    CAS  Google Scholar 

  106. Drake RR, Neamati N, Hong H et al (1998) Identification of a nucleotide binding site in HIV-1 integrase. Proc Natl Acad Sci USA 95:4170–4175. doi:10.1073/pnas.95.8.4170

    CAS  Google Scholar 

  107. Savarino A (2007) In-silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology 4:21–35. doi:10.1186/1742-4690-4-21

    Google Scholar 

  108. Sayasith K, Sauve G, Yelle J (2000) Characterization of mutant HIV-1 integrase carrying amino acid changes in the catalytic domain. Mol Cells 10:525–532

    CAS  Google Scholar 

Download references

Acknowledgements

D.K.D thanks the All India Council of Technical Education (AICTE, New Delhi), J.V. thanks the Council of Scientific and Industrial Research (CSIR, New Delhi), and A.S. thanks the Indian National Science Academy (INSA, New Delhi) for financial support. The computational facilities were made possible through grants from the Department of Science and Technology (SR/FST/LSI-163/2003) and the Council of Scientific and Industrial Research (01(1986)/05/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evans C. Coutinho.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 654 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhaked, D.K., Verma, J., Saran, A. et al. Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA). J Mol Model 15, 233–245 (2009). https://doi.org/10.1007/s00894-008-0399-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0399-4

Keywords

Navigation