Skip to main content
Log in

CO2 adsorption on polar surfaces of ZnO

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Physical and chemical adsorption of CO2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO2 on the ZnO(0001) surface show that the p orbitals of CO2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band.

ELF analysis of bidentate and tridentate chemical adsorptions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abe K, Banno Y, Sasayama T, Koizumi K (2009) J Vac Sci Technol B 27:1652–1654. doi:10.1116/1.3089374

    Article  CAS  Google Scholar 

  2. Beltran A, Andres J, Calatayud M, Martins JBL (2001) Theoretical study of ZnO (10(1)over-bar-0) and Cu/ZnO (10(1)over-bar-0) surfaces. Chem Phys Lett 338:224–230. doi:10.1016/S0009-2614(01)00238-X

    Article  CAS  Google Scholar 

  3. Marana NL, Longo VM, Longo E, Martins JBL, Sambrano JR (2008) Electronic and structural properties of the (10(1)over-bar0) and (11(2)over-bar0) ZnO surfaces. J Phys Chem A 112:8958–8963

    Article  CAS  Google Scholar 

  4. Tabatabaei J, Sakakini BH, Waugh KC (2006) On the mechanism of methanol synthesis and the water-gas shift reaction on ZnO. Catal Lett 110:77–84

    Article  CAS  Google Scholar 

  5. Noguera C (2000) Polar oxide surfaces. J Phys Condens Matter 12:R367–R410

    Article  CAS  Google Scholar 

  6. Noei H, Woll C, Mahler M, Wang YM (2011) Activation of carbon dioxide on ZnO nanoparticles studied by vibrational spectroscopy. J Phys Chem C 115:908–914. doi:10.1021/jp102751t

    Article  CAS  Google Scholar 

  7. Martins JBL, Longo E, Salmon ODR, Espinoza VAA, Taft CA (2004) The interaction of H-2, CO, CO2, H2O and NH3 on ZnO surfaces: an Oniom study. Chem Phys Lett 400:481–486

    Article  CAS  Google Scholar 

  8. Martins JBL, Longo E, Taft CA (1998) CO2 and NH3 interaction with ZnO surface: An AM1 study. Int J Quantum Chem 70:367–374

    Article  CAS  Google Scholar 

  9. Martins JBL, Sambrano JR, Vasconcellos LAS, Longo E, Taft CA (2004) Theoretical analysis of the interaction of CO, CO2, and NH3, with ZnO. Quim Nova 27:10–16

    Article  CAS  Google Scholar 

  10. Borodko Y, Somorjai GA (1999) Catalytic hydrogenation of carbon oxides—a 10-year perspective. Appl Catal A Gen 186:355–362

    Article  CAS  Google Scholar 

  11. Fink K (2006) Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H-2, CO, and CO2 at these sites. Phys Chem Chem Phys 8:1482–1489

    Article  CAS  Google Scholar 

  12. Moreira NH, da Rosa AL, Frauenheim T (2009) Covalent functionalization of ZnO surfaces: a density functional tight binding study. Appl Phys Lett 94:193109

    Google Scholar 

  13. French SA, Sokol AA, Bromley ST, Catlow CRA, Rogers SC, King F, Sherwood P (2001) From CO2 to methanol by hybrid QM/MM embedding. Angew Chem Int Ed 40:4437–4440. doi:1433-7851/01/4023-4438

    Article  CAS  Google Scholar 

  14. Chen WK, Zhang YF, Ding KN, Xu YJ, Li Y, Li JQ (2004) A density functional theory study of the adsorption of CO2 on a ZnO(10(1)over-bar0) surface. Chin J Struct Chem 23:337–341

    CAS  Google Scholar 

  15. Wang Y, Kovacik R, Meyer B, Kotsis K, Stodt D, Staemmler V, Qiu H, Traeger F, Langenberg D, Muhler M, Woll C (2007) CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. Angew Chem Int Ed 46:5624–5627. doi:10.1002/anie.200700564

    Article  CAS  Google Scholar 

  16. Kotsis K, Stodt D, Staemmler V, Kovacik R, Meyer B, Traeger F, Langenberg D, Strunskus T, Kunat M, Woll C (2008) CO2 adlayers on the mixed terminated ZnO(10-10) surface studied by he atom scattering, photoelectron spectroscopy and ab initio electronic structure calculations. Z Phys Chem Int J Res Phys Chem Chem Phys 222:891–915

    CAS  Google Scholar 

  17. Davis R, Walsh JF, Muryn CA, Thornton G, Dhanak VR, Prince KC (1993) The orientation of formate and carbonate on Zno[10(1)over-Bar0]. Surf Sci 298:L196–L202

    Article  CAS  Google Scholar 

  18. GutierrezSosa A, Crook S, Haq S, Lindsay R, Ludviksson A, Parker S, Campbell CT, Thornton G (1996) Influence of Cu overlayers on the interaction of CO and CO2 with ZnO(000(1)over-bar)-O. Faraday Discuss 105:355–368

    Article  CAS  Google Scholar 

  19. Barteau MA (1993) Site requirements of reactions on oxide surfaces. J Vac Sci Technol A 11:2162–2168

    Article  CAS  Google Scholar 

  20. Wang J, Burghaus U (2005) Adsorption of CO on the copper-precovered ZnO(0001) surface: a molecular-beam scattering study. J Chem Phys 123(18):184716

    Google Scholar 

  21. Wang J, Burghaus U (2005) Structure-activity relationship: the case of CO2 adsorption on H/Zn-ZnO(0001). Chem Phys Lett 403:42–46

    Article  CAS  Google Scholar 

  22. Wang J, Burghaus U (2005) Adsorption dynamics of CO2 on Zn-ZnO(0001): a molecular beam study. J Chem Phys 122:044705

    Google Scholar 

  23. Göpel W, Bauer RS, Hansson G (1980) Ultraviolet photoemission studies of chemisorption and point defect formation on ZnO nonpolar surfaces. Surf Sci 99:138–156. doi:10.1016/0039-6028(80)90584-1

    Article  Google Scholar 

  24. Hotan W, Göpel W, Haul R (1979) Interaction of CO2 and co with nonpolar zinc oxide surfaces. Surf Sci 83:162–180. doi:10.1016/0039-6028(79)90486-2

    Article  CAS  Google Scholar 

  25. Gutierrez-Sosa A, Evans TM, Parker SC, Campbell CT, Thornton G (2002) Geometry of C1-3 oxygenates on ZnO(0001)-Zn. Surf Sci 497:239–246. doi:10.1016/S0039-6028(01)01645-4

    Article  CAS  Google Scholar 

  26. Cheng WH, Kung HH (1982) Interaction of Co, Co2 and O2 with non-polar, stepped and polar Zn surfaces of Zno. Surf Sci 122:21–39

    Article  CAS  Google Scholar 

  27. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864–B871

    Article  Google Scholar 

  28. Zhang FY (2011) A possible new transition path for ZnO from B4 to B1. Physica B 406:3942–3946

    Article  CAS  Google Scholar 

  29. Ashrafi A, Jagadish C (2007) Review of zincblende ZnO: stability of metastable ZnO phases. J Appl Phys 102:071101

    Article  Google Scholar 

  30. Charifi Z, Baaziz H, Reshak AH (2007) Ab-initio investigation of structural, electronic and optical properties for three phases of ZnO compound. Phys Status Solidi B Basic Solid State Phys 244:3154–3167

    Article  CAS  Google Scholar 

  31. Hill NA, Waghmare U (2000) First-principles study of strain-electronic interplay in ZnO: stress and temperature dependence of the piezoelectric constants. Phys Rev B 62:8802–8810

    Article  CAS  Google Scholar 

  32. Schroer P, Kruger P, Pollmann J (1993) 1st-principles calculation of the electronic-structure of the wurtzite semiconductors Zno and Zns. Phys Rev B 47:6971–6980

    Article  CAS  Google Scholar 

  33. Perdew JP (1991) Electronic structure of solids. Akademie, Berlin

    Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  35. Mattsson AE, Armiento R, Schultz PA, Mattsson TR (2006) Nonequivalence of the generalized gradient approximations PBE and PW91. Phys Rev B 73:195123. doi:10.1103/PhysRevB.73.195123

    Article  Google Scholar 

  36. Adllan AA, Corso AD (2011) Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules. J Phys Condens Matter 23:425501. doi:10.1088/0953-8984/23/42/425501

    Article  Google Scholar 

  37. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  38. Swart M, Snijders JG (2003) Accuracy of geometries: influence of basis set, exchange–correlation potential, inclusion of core electrons, and relativistic corrections. Theor Chem Accounts 110:34–41. doi:10.1007/s00214-003-0443-5

    Article  CAS  Google Scholar 

  39. Orita H, Itoh N, Inada Y (2004) All electron scalar relativistic calculations on adsorption of CO on Pt(1 1 1) with full-geometry optimization: a correct estimation for CO site-preference. Chem Phys Lett 384:271–276. doi:10.1016/j.cplett.2003.12.034

    Article  CAS  Google Scholar 

  40. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  41. Abrahams SC, Bernstein JL (1969) Remeasurement of the structure of hexagonal ZnO. Acta Cryst B 25:1233–1236. doi:10.1107/S0567740869003876

    Article  CAS  Google Scholar 

  42. Shein IR, Kiiko VS, Makurin YN, Gorbunova MA, Ivanovskii AL (2007) Elastic parameters of single-crystal and polycrystalline wurtzite-like oxides BeO and ZnO: Ab initio calculations. Phys Solid State 49:1067–1073

    Article  CAS  Google Scholar 

  43. Kohout M (2011) DGRID, version 4.6. Radebeul

  44. Sawada H, Wang R, Sleight AW (1996) An electron density residual study of zinc oxide. J Solid State Chem 122:148–150

    Article  CAS  Google Scholar 

  45. Woll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82:55–120

    Article  Google Scholar 

  46. Dulub O, Diebold U, Kresse G (2003) Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys Rev Lett 90:016102

    Article  Google Scholar 

  47. Wander A, Schedin F, Steadman P, Norris A, McGrath R, Turner TS, Thornton G, Harrison NM (2001) Stability of polar oxide surfaces. Phys Rev Lett 86:3811–3814

    Article  CAS  Google Scholar 

  48. Wander A, Harrison NM (2001) The stability of polar oxide surfaces: the interaction of H2O with ZnO(0001) and ZnO(000math). J Chem Phys 115:2312–2316. doi:10.1063/1.1384030

    Article  CAS  Google Scholar 

  49. Meyer B (2004) First-principles study of the polar O-terminated ZnO surface in thermodynamic equilibrium with oxygen and hydrogen. Phys Rev B 69:045416

    Article  Google Scholar 

  50. Jedrecy N, Sauvage-Simkin M, Pinchaux R (2000) The hexagonal polar ZnO(0001)-(1 x 1) surfaces: structural features as stemming from X-ray diffraction. Appl Surf Sci 162:69–73

    Article  Google Scholar 

  51. King ST, Parihar SS, Pradhan K, Johnson-Steigelman HT, Lyman PF (2008) Observation of a (root 3 x root 3)R30 degrees reconstruction on O-polar ZnO surfaces. Surf Sci 602:L131–L134

    Article  CAS  Google Scholar 

  52. Valtiner M, Torrelles X, Pareek A, Borodin S, Gies H, Grundmeier G (2010) In situ study of the polar ZnO(0001)-Zn surface in alkaline electrolytes. J Phys Chem C 114:15440–15447

    Article  CAS  Google Scholar 

  53. Carlsson JM (2001) Electronic structure of the polar ZnO{0001}-surfaces. Comput Mater Sci 22:24–31

    Article  CAS  Google Scholar 

  54. Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  55. Xu PS, Sun YM, Shi CS, Xu FQ, Pan HB (2003) The electronic structure and spectral properties of ZnO and its defects. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 199:286–290

    Article  CAS  Google Scholar 

  56. Kaxiras E (2003) Atomic and electronic structure of solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Au CT, Hirsch W, Hirschwald W (1988) Adsorption of carbon-monoxide and carbon-dioxide on annealed and defect zinc-oxide (0001) surfaces studied by photoelectron-spectroscopy (Xps and Ups). Surf Sci 197:391–401

    Article  CAS  Google Scholar 

  58. Chuasiripattana K, Warschkow O, Delley B, Stampfl C (2010) Reaction intermediates of methanol synthesis and the water-gas-shift reaction on the ZnO(0001) surface. Surf Sci 604:1742–1751

    Article  CAS  Google Scholar 

  59. Lindsay R, Gutierrez-Sosa A, Thornton G, Ludviksson A, Parker S, Campbell CT (1999) NEXAFS study of CO adsorption on ZnO(000(1)over-bar1)-O and ZnO (000(1)over-bar)-O/Cu. Surf Sci 439:131–138

    Article  CAS  Google Scholar 

  60. Kossmann J, Rossmuller G, Hattig C (2012) Prediction of vibrational frequencies of possible intermediates and side products of the methanol synthesis on ZnO(000(1)over-bar) by ab initio calculations. J Chem Phys 136:034706. doi:10.1063/1.3671450

    Article  Google Scholar 

  61. Bowker M, Houghton H, Waugh KC (1981) Mechanism and kinetics of methanol synthesis on zinc oxide. J Chem Soc, Faraday Trans 1(77):3023–3036. doi:10.1039/F19817703023

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the careful reading done by the referees. The authors are indebted to the financial support of National Council of Technological and Scientific Development (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and National Institute of Science and Technology of Materials in Nanotechnology (INCTMN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio A. S. Farias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farias, S.A.S., Longo, E., Gargano, R. et al. CO2 adsorption on polar surfaces of ZnO. J Mol Model 19, 2069–2078 (2013). https://doi.org/10.1007/s00894-012-1636-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1636-4

Keywords

Navigation