Skip to main content
Log in

Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

This study aims to experimentally and theoretically examine the nature and energy of intermolecular bond interactions between thiourea and water molecules using natural bond orbital (NBO), non-linear optical (NLO), atoms in molecules (AIM), and reduced density gradient (RDG) analyses based on the quantum chemical approach and spectroscopic analysis on X-ray and FTIR. Geometry optimizations of Thio-(H2O)1–5 complexes were carried out in the gas phase by B3LYP/6-311++G(d,p) level of density functional theory. The nature of the molecular interactions between the water and thiourea through hydrogen bonding has been investigated using RDG and AIM methods. NBO analysis shows that the Thio-(H2O)5 complex has higher stabilization energy values than the other complexes. The non-linear optical properties, such as dipole moment (μ), the polarizability (α0), and the first hyperpolarizability (βtot), and thermodynamic functions, such as entropy (S), specific heat capacity (Cv), and thermal energy (E), were calculated using the same method. It was observed that thermodynamic parameters, polarizability, and the first hyperpolarizability increased with the number of water molecules. X-ray diffraction analysis confirmed that thiourea is single crystal, and the thiourea/water complexes are crystalline in nature. Besides, the infrared spectrum shows the existence of water molecules and it is used to get details of the structure of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olah GA, Burrichter A, Rasul G, Christe KO, Prakash GS (1997) Preparation, NMR, Raman, and DFT/IGLO/GIAO-MP2 study of mono-and diprotonated thiourea and theoretical investigation of triprotonated thiourea1. J Am Chem Soc 119(19):4345–4352

    Article  CAS  Google Scholar 

  2. Hata M, Moribe K, Ando S, Tozuka Y, Yamamoto K (2014) Density functional theory study of equimolar complexation of urea or thiourea with 2-alcoxybenzamide. J Struct Chem 55(8):1506–1513

    Article  CAS  Google Scholar 

  3. Martin ML, Filleux-Blanchard ML, Martin GJ, Webb GA (1980) Application of 15N spectroscopy and dynamic NMR to the study of ureas, thioureas and their Lewis acid adducts. Org Magn Reson 13(6):396–402

    Article  CAS  Google Scholar 

  4. Ha TK, Puebla C (1994) A theoretical study of conformations and vibrational frequencies in (NH2) 2C = X compounds (X = O, S, and Se). Chem Phys 181(1–2):47–55

    Article  CAS  Google Scholar 

  5. Sahu S, Rani Sahoo P, Patel S, Mishra BK (2011) Oxidation of thiourea and substituted thioureas: a review. J Sulfur Chem 32(2):171–197

    Article  CAS  Google Scholar 

  6. Klern H, Lux J, Noll D, Reider W, Phillips H (1971) Proc. of the American Power Conference, Illinois Institute of Technology, Chicago, IL, April 20–22. 33:702–709

  7. Knox JA, Smith JA, Stout RF (1974) US Patent №3,730,901. Chem Abstr 81:53183

    Google Scholar 

  8. Dawood KM (2019) Bis-thiourea derivatives and their utility in synthesis of mono-heterocyclic, bis-heterocyclic, and fused heterocyclic systems. J Heterocyclic Chem 56(6):1701–1721

    Article  CAS  Google Scholar 

  9. Liav A, Angala SK, Brennan PJ, Jackson M (2008) ND-aldopentofuranosyl-N′-[p-(isoamyloxy) phenyl]-thiourea derivatives: potential anti-TB therapeutic agents. Bioorg Med Chem Lett 18(8):2649–2651

    Article  CAS  Google Scholar 

  10. Tsogoeva SB, Hateley MJ, Yalalov DA, Meindl K, Weckbecker C, Huthmacher K (2005) Thiourea-based non-nucleoside inhibitors of HIV reverse transcriptase as bifunctional organocatalysts in the asymmetric Strecker synthesis. Bioorg Med Chem 13(19):5680–5685

    Article  CAS  Google Scholar 

  11. Falzon D, Hill G, Pal SN, Suwankesawong W, Jaramillo E (2014) Pharmacovigilance and tuberculosis: applying the lessons of thioacetazone. Bull World Health Organ 92:918–919

    Article  Google Scholar 

  12. Narimani H, Kohzadi H (2014) A practical and convenient method for the synthesis of anesthetic drug thiopental: using thiourea and sodium ethoxide. Iran Chem Commun 2:48–55

    Google Scholar 

  13. Živec M, Anzic B, Gobec S (2010) A novel scalable synthesis of pramipexole. Org Process Res Dev 14(5):1125–1129

    Article  Google Scholar 

  14. Hassan AA, El-Sheref EM (2010) Chemistry and heterocyclization of dithiobiurea and thioureidoalkylthiourea. J Heterocyclic Chem 47(4):764–784

    Article  CAS  Google Scholar 

  15. Sharma SK, Steinbergs N, Wu Y, Crowley ML, Hanson AS, Casero Jr RA, Woster PM (2010) (Bis)urea and (Bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. J Med Chem 53(14):5197–5212

    Article  CAS  Google Scholar 

  16. Jara P, Merchan J, Yutronic N, Gonzalez G (2000) Macroscopic evidence of inclusion phenomena in urea and thiourea matrices. J Incl Phenom Macrocycl Chem 36(1):99–100

    Article  Google Scholar 

  17. Shakeel A, Altaf AA, Qureshi AM, Badshah A (2016) Thiourea derivatives in drug design and medicinal chemistry: a short review. J Drug Des Med Chem 2(1):10

    Google Scholar 

  18. Weiqun Z, Wen Y, Lihua Q (2005) Structure and stability of thiourea with water, DFT and MP2 calculations. J Mol Struct THEOCHEM 730(1–3):133–141

    Article  Google Scholar 

  19. Pawlowski PM, Okimoto SR, Tao FM (2003) Structure and stability of sulfur trioxide–ammonia clusters with water: implications on atmospheric nucleation and condensation. J Phys Chem A 107(27):5327–5333

    Article  CAS  Google Scholar 

  20. Ju XH, Xiao HM (2002) Ab initio study on interactions in difluoroamine clusters from one to four molecules. Propellants Explos Pyrotech 27(6):320–326

    Article  CAS  Google Scholar 

  21. Xia QY, Xiao HM, Ju XH, Gong XD (2004) Density functional theory study of the structures and properties of (H2AlN3)n (n = 1–4) clusters. J Phys Chem A 108(14):2780–2786

    Article  CAS  Google Scholar 

  22. Willard AP, Chandler D (2014) The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like. J Chem Phys 141(18):18C519

    Article  Google Scholar 

  23. Ghosh SR, Debnath B, Jana AD (2020) Water dimer isomers: interaction energies and electronic structure. J Mol Model 26(1):1–9

    Article  Google Scholar 

  24. Hammami F, Ghalla H, Nasr S (2015) Intermolecular hydrogen bonds in urea–water complexes: DFT, NBO, and AIM analysis. Comput Theor Chem 1070:40–47

    Article  CAS  Google Scholar 

  25. Kaur D, Khanna S (2014) Hydrogen bonding of formamide, urea, urea monoxide and their thio-analogs with water and homodimers. J Chem Sci 126(6):1815–1829

    Article  CAS  Google Scholar 

  26. Ivanov EV, Abrosimov VK (2013) Apparent molar volumes and expansibilities of thiourea, 1,3-dimethylurea, and 1,3-dimethylthiourea in water at temperatures from T=(278.15 to 318.15) K and atmospheric pressure. J Chem Eng Data 58(5):1103–1111

    Article  CAS  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford

    Google Scholar 

  28. GaussView, Guassian, Inc. (Carnergie Office Parck-Building6 Pittsburgh PA 151064 USA), Copyright © 2000-2003 Semichem. Inc.

  29. Becke AD (1993) Becke’s three parameter hybrid method using the LYP correlation functional. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785

    Article  CAS  Google Scholar 

  31. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  Google Scholar 

  32. Runge E, Gross EK (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997

    Article  CAS  Google Scholar 

  33. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  Google Scholar 

  34. Jayalakshmi D, Kumar J (2006) Growth and characterization of bis thiourea zinc acetate (BTZA). J Cryst Res Technol 41(1):37–40

    Article  CAS  Google Scholar 

  35. Ravi B, Jegatheesan A, Neelakandaprasad B, Sadeeshkumar C, Rajarajan G (2014) Optical and conductivity analysis of thiourea single crystals. Rasayan J Chem 7:287–294

    CAS  Google Scholar 

  36. Isakov H, Askarov IR, Usmanov S (2018) FTIR spectroscopic studies of compounds of thiourea-formaldehyde oligomers. Universum: Eng Sci J 12(57) (in Rus)

  37. Larkin P (2017) Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier

  38. Ajayi TJ, Shapi M (2020) Solvent-free mechanochemical synthesis, hirshfeld surface analysis, crystal structure, spectroscopic characterization and NBO analysis of Bis (ammonium) Bis ((4-methoxyphenyl) phosphonodithioato)-nickel (II) dihydrate with DFT studies. J Mol Struct 1202:127254

    Article  CAS  Google Scholar 

  39. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1, TCl. University of Wisconsin, Madison

    Google Scholar 

  40. Bader RFW (1990) Atoms in molecules – a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  41. Rozas I, Alkorta I, Elguero J (2000) Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122(45):11154–11161

    Article  CAS  Google Scholar 

  42. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132(18):6498–6506

    Article  CAS  Google Scholar 

  43. Agarwal P, Bee S, Gupta A, Tandon P, Rastogi VK, Mishra S, Rawat P (2014) Quantum chemical study on influence of intermolecular hydrogen bonding on the geometry, the atomic charges and the vibrational dynamics of 2,6-dichlorobenzonitrile. Spectrochim Acta A Mol Biomol Spectrosc 121:464–482

    Article  CAS  Google Scholar 

  44. Niu X, Huang Z, Ma L, Shen T, Guo L (2013) Density functional theory, natural bond orbital and quantum theory of atoms in molecule analyses on the hydrogen bonding interactions in tryptophan-water complexes. J Chem Sci 125(4):949–958

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The devices of the Krasnoyarsk Regional Center of Research Equipment of Federal Research Center “Krasnoyarsk Science Center SB RAS” were used in the work. The authors are grateful to G.N. Bondarenko for obtaining X-ray data and Korolkova I.V. for obtaining FTIR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feride Akman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akman, F., Issaoui, N. & Kazachenko, A.S. Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, …, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J Mol Model 26, 161 (2020). https://doi.org/10.1007/s00894-020-04423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04423-3

Keywords

Navigation