Skip to main content
Log in

Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The present paper discusses the oxygen transport properties, oxygen stoichiometry, phase stability, and chemical and mechanical stability of the perovskites \({\text{Ba}}_{{0.5}} {\text{Sr}}_{{0.5}} {\text{Co}}_{{0.8}} {\text{Fe}}_{{0.2}} {\text{O}}_{{3 - \delta }} \) (BSCF) and \({\text{SrCo}}_{{0.8}} {\text{Fe}}_{{0.2}} {\text{O}}_{{3 - \delta }} \)(SCF) for air separation applications. The low oxygen conductive brownmillerite phase in SCF is characterized using in-situ neutron diffraction, thermographic analysis and temperature programmed desorption but this phase is not present for BSCF under the conditions studied. Although both materials show oxygen fluxes well above 10 ml/cm2·min at T=1,273 K and pO2=1 bar for self-supporting, 200 μm-thick membranes, BSCF is preferred as a membrane material due to its phase stability. However, BSCF’s long-term stable performance remains to be confirmed. The deviation from ideal oxygen stoichiometry for both materials is high: δ>0.6. The thermal expansion coefficients of BSCF and SCF are 24×10−6 and 30×10−6 K−1, respectively, as determined from neutron diffraction data. The phenomenon of kinetic demixing has been observed at pO2<10−5 bar, resulting in roughening of the surface and enrichment with alkaline earth metals. Stress–strain curves were determined and indicated creep behavior that induces undesired ductility at T=1,073 K for SCF. Remedies for mechanical and chemical instabilities are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Teraoka Y, Zhang HM, Furukawa S, Yamazoe N (1985) Chem Lett 1743

  2. Qiu L, Lee TH, Liu M, Yang YL, Jacobson AJ (1995) Solid State Ion 76:321

    Article  CAS  Google Scholar 

  3. Lee TH, Yang YL, Jacobson AJ, Abeles B, Milner S (1997) Solid State Ion 100:87

    Article  CAS  Google Scholar 

  4. Li Y, Maxey ER, Richardson JW (2005) J Am Ceram Soc 88:1244

    Article  CAS  Google Scholar 

  5. Majkic G, Wheeler L, Salama K (2000) Acta Mater 48:1907

    Article  CAS  Google Scholar 

  6. McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Solid State Ion 177:283

    Google Scholar 

  7. Liu LM, Lee TH, Qiu L, Yang YL, Jacobson AJ (1996) Mater Res Bull 31:29

    Article  CAS  Google Scholar 

  8. Prado F, Grunbaum N, Caneiro A, Manthiram A (2004) Solid State Ion 167:147

    Article  CAS  Google Scholar 

  9. Grunbaum N, Mogni L, Prado F, Caneiro A (2004) J Solid State Chem 177:2350

    Article  CAS  Google Scholar 

  10. Fan CG, Deng ZQ, Zuo YB, Liu W, Chen CS (2004) Solid State Ion 166:339

    Article  CAS  Google Scholar 

  11. Tan L, Yang L, Gu X, Jin W, Zhang L, Xu N (2005) AIChE J 50:701

    Article  CAS  Google Scholar 

  12. Tan L, Yang L, Gu X, Jin W, Zhang L, Xu N (2004) J Membr Sci 230:21

    Article  CAS  Google Scholar 

  13. Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000) J Membr Sci 172:177

    Article  CAS  Google Scholar 

  14. Kharton VV, Shaulo AL, Viskup AP, Avdeev M, Yaremchenko AA, Patrakeev MV, Kurbakov AI, Naumovich AN, Marques FMB (2002) Solid State Ion 150:229

    Article  CAS  Google Scholar 

  15. Ishihara T, Tsuruta Y, Chunying Y, Tokada T, Nishiguchi H, Takita Y (2003) J Electrochem Soc 150:E17

    Article  CAS  Google Scholar 

  16. Kharton VV, Yaremchenko AA, Shaulo AL, Patrakeev MV, Naumovich EN, Logvinovich DI, Frade JR, Marques FMB (2004) J Solid State Chem 177:26

    Article  CAS  Google Scholar 

  17. Bredesen R, Sogge J (1996) In: Seminar on the ecological applications of innovative membrane technology in the chemical industry Chem/Sem. 21/R.12 Cetraro, Calabria

  18. Viitanen MM, van Welzenis RG, Brongersma HH, van Berkel FPF (2002) Solid State Ion 150:223

    Article  CAS  Google Scholar 

  19. Vente JF, Haije WG, IJpelaan R, Rusting FT (2006) J Membr Sci doi:10.1016/j.memsci.2005.10.044

  20. Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraaf AJ (1993) Solid State Ion 63–65:816

    Article  Google Scholar 

  21. Vente JF, Haije WG, Rak ZS (2006) J Membr Sci 276:178

    Google Scholar 

  22. Wiik K, Aasland S, Hansen HL, Tangen IL, Ødegård R (2002) Solid State Ion 152–153:675

    Article  Google Scholar 

  23. Zhang K, Yang YL, Ponnusamy D, Jacobson AJ, Salama K (1999) J Mater Sci 34:1367

    Article  CAS  Google Scholar 

  24. Wang H, Tablet C, Feldhoff A, Caro J (2005) J Membr Sci 262:20

    Article  CAS  Google Scholar 

  25. Kharton VV, Marques FMB (2002) Curr Opin Solid State Mater Sci 6:261

    Article  CAS  Google Scholar 

  26. Yi J, Feng SJ, Zuo YB, Liu W, Chen C (2005) Chem Mater 17:5856

    Article  CAS  Google Scholar 

  27. Tong J, Yang W, Zhu B, Cai R (2002) J Membr Sci 203:175

    Article  CAS  Google Scholar 

  28. McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Chem Mater 18:2187

    CAS  Google Scholar 

  29. van Doorn RHE, Bouwmeester HJM, Burggraaf AJ (1998) Solid State Ion 111:263

    Article  Google Scholar 

  30. van Veen AC, Rebeilleau M, Farruseng D, Mirodatos C (2003) Chem Commun 32

  31. Wang H, Cong Y, Yang W (2002) Chin Sci Bull 47:534

    Article  CAS  Google Scholar 

  32. McIntosh S, Vente JF, Haije WG, Blank DHA, Bouwmeester HJM (2006) Solid State Ion (in press)

  33. Lide DR (1997) Handbook of chemistry and physics, 78th edn. CRC Press, Boca Raton

    Google Scholar 

  34. Majkic G, Wheeler L, Salama K (2000) Mater Res Soc Symp Proc 575:349

    CAS  Google Scholar 

  35. Majkic G, Mironova M, Salama K (2001) Phil Mag A 81:2675

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for Steven McIntosh was provided by the EU Marie Curie Intra-European Fellowship “OXYMEM.” Further financial support was provided by the Dutch Ministry of Economic Affairs through the Energiebesparing Door Innovatie (EDI) program administered by Senter-Novem under contract number EDI03201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaap F. Vente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vente, J.F., McIntosh, S., Haije, W.G. et al. Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. J Solid State Electrochem 10, 581–588 (2006). https://doi.org/10.1007/s10008-006-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-006-0130-2

Keywords

Navigation