Skip to main content
Log in

Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A simple procedure was developed to prepare a glassy carbon electrode modified with carbon nanotubes and Ruthenium (III) complexes. First, 25 μl of dimethyl sulfoxide–carbon nanotubes solutions (0.4 mg/ml) was cast on the surface of the glassy carbon electrode and dried in air to form a carbon nanotube film at the electrode surface. Then, the glassy carbon/carbon nanotube-modified electrode was immersed into a Ruthenium (III) complex solution (direct deposition) for a short period of time (10–20 s for multiwalled carbon nanotubes and 20–40 s for single-walled carbon nanotubes). The cyclic voltammograms of the modified electrode in aqueous solution shows a pair of well-defined, stable, and nearly reversible redox couple, Ru(III)/Ru(II), with surface-confined characteristics. The attractive mechanical and electrical characteristics of carbon nanostructures and unique properties and reactivity of Ru complexes are combined. The transfer coefficient (α), heterogeneous electron transfer rate constants (k s), and surface concentrations (Γ) for the glassy carbon/single-walled carbon nanotubes/Ru(III) complex-, glassy carbon/multiwalled carbon nanotubes/Ru(III) complex-, and glassy carbon/Ru(III) complex-modified electrodes were calculated using the cyclic voltammetry technique. The modified electrodes showed excellent catalytic activity, fast response time, and high sensitivity toward the reduction of nicotinamide adenine dinucleotide in phosphate buffer solutions at a pH range of 4–8. The catalytic cathodic current depends on the nicotinamide adenine dinucleotide concentration. In the presence of alcohol dehydrogenase, the modified electrode exhibited a response to addition of acetaldehyde. Therefore, the main product of nicotinamide adenine dinucleotide electroreduction at the Ru(III) complex/carbon nanotube-modified electrode was the enzymatically active NADH. The purposed sensor can be used for acetaldehyde determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2.
Fig. 9

Similar content being viewed by others

References

  1. Aizawa M, Suzuki S, Kubo M (1976) Biochim Biophys Acta 444:886

    CAS  Google Scholar 

  2. Moiroux J, Deycard S, Malinski T (1985) J Electroanal Chem 194:99

    Article  CAS  Google Scholar 

  3. Studnickova M, Klukanova HP, Turanek J, Kovar J (1988) J Electroanal Chem 252:383

    Article  CAS  Google Scholar 

  4. Karyakin AA, Bobrova OA, Karyakina EE (1995) J Electroanal Chem 399:179

    Article  Google Scholar 

  5. Damin A, Omanovic S (2006) J Mol Cat A Chem 253:222

    Article  Google Scholar 

  6. Chen SM, Lin KH (2006) J Electroanal Chem 586:145

    Article  CAS  Google Scholar 

  7. Chen SM, Lin KH (2005) J Electroanal Chem 583:248

    Article  CAS  Google Scholar 

  8. Lin KC, Chen SM (2005) J Electroanal Chem 578:213

    Article  CAS  Google Scholar 

  9. Karyakin AA, Bobrova OA, Karyakina EE (1995) J Electroanal Chem 399:179

    Article  Google Scholar 

  10. Karyakin AA, Ivanova YN, Karyakina EE (2003) Electrochem Commun 5:677

    Article  CAS  Google Scholar 

  11. Warriner K, Higson S Vadgama P (1997) Mater Sci Eng C 5:91

    Article  Google Scholar 

  12. Beley M, Collin JP (1993) J Mol Catal 79:133

    Article  CAS  Google Scholar 

  13. Man F, Omanovic S (2004) J Electroanal Chem 568:301

    Article  CAS  Google Scholar 

  14. Damian A, Omanovic S (2006) J Mol Cat A: Chem 253:222

    Article  CAS  Google Scholar 

  15. Lin KC, Chen SM (2006) J Electroanal Chem 589:52

    Article  CAS  Google Scholar 

  16. Chen SM, Lin KH (2006) Electrochim Acta 51:4744

    Article  CAS  Google Scholar 

  17. Sobolov SB, Leonida MD, Bartoszko-Malik A, Voivodov KI, McKinney F, Kim J, Fry AJ (1996) J Org Chem 61:2125

    Article  CAS  Google Scholar 

  18. Voivodov KI, Sobolov SB, Leonida MD, Fry AJ (1995) Bioorg Med Chem Lett 5:681

    Article  CAS  Google Scholar 

  19. Kim S, Yun SE, Kang C (1999) J Electroanal Chem 465:153

    Article  CAS  Google Scholar 

  20. Kim S, Yun SE, Kang C (1999) Electrochem Commun 1:151

    Article  CAS  Google Scholar 

  21. Cotton FA, Wilkinson G (1999) Advanced inorganic chemistry. Wiley, New York, pp 868–900

    Google Scholar 

  22. Appelbaum L, Heinriches C, Demtschuk J, Michman M, Oron M, Schafer HJ, Schumann H (1999) J Organomet Chem 592:240

    Article  CAS  Google Scholar 

  23. Trasatti S (2000) Electrochim Acta 45:2377

    Article  CAS  Google Scholar 

  24. Kim IH, Kim KB (2004) J Electrochem Soc 151:E7

    Article  CAS  Google Scholar 

  25. Lima EC, Fenga PG, Romero JR, De- Giovani WF (1998) Polyhedron 17:313

    Article  CAS  Google Scholar 

  26. Rodriguez M, Romero I, Liobet A, Deronzier AS, Parella T, Stoecki-Evans H (2001) Inorg Chem 40:4150

    Article  CAS  Google Scholar 

  27. Premkumar J, Khoo SB (2004) Electrochem Commun 6:984

    Article  CAS  Google Scholar 

  28. Wang X, Zhang Q, Han Z, Wang E, Guo Y, Hu C (2004) J Electroanal Chem 563:221

    Article  CAS  Google Scholar 

  29. Azem A, Man F, Omanovic S (2004) J Molcul Cat A Chem 219:283

    Article  CAS  Google Scholar 

  30. Salimi A, Pourbeyram S (2003) Talanta 60:205

    Article  CAS  Google Scholar 

  31. Yan YK, Melchart M, Habtemariam A (2006) J Biol Inorg Chem 11:483

    Article  CAS  Google Scholar 

  32. Polyanski D, Cabelli D, Muckerman JT, Fujita E, Koizumi TA, Fukushima T, Wada T, Tanaka K (2007) Angew Chem Int Ed 46:4169

    Article  Google Scholar 

  33. Yakabson BI, Smally RE (1997) Am Sci 85:324

    Google Scholar 

  34. Lawrence NS, Wang J (2005) Electrochem Commun 8:71

    Article  Google Scholar 

  35. Sun D, Zhu L, Huang H, Zhu G (2006) J Electroanal Chem 597:39

    Article  CAS  Google Scholar 

  36. Zhao K, Song H, Zhung S, Dai L, He P, Fang Y (2007) Electrochem Commun 9:65

    Article  CAS  Google Scholar 

  37. Li Z, Chen J, Pan D, Tao W, Nie L, Yao S (2006) Electrochim Acta 51:4255

    Article  CAS  Google Scholar 

  38. Czerw R, Guo Z, Ajayan PM, Sun YP, Carol DL (2001) Nano Lett 1:423

    Article  CAS  Google Scholar 

  39. Kooi SE, Schlecht U, Burghard M, Kern K (2002) Angew Chem 114:1409

    Article  Google Scholar 

  40. Chen J, Liu H, Weimer WA, Halls MD, Waldeck DH, Walker GC (2002) J Am Chem Soc 124:9034

    Article  CAS  Google Scholar 

  41. Chen RJ, Zhang Y, Wang D, Dai H (2001) J Am Chem Soc 123:3838

    Article  CAS  Google Scholar 

  42. Frehill F, Vos JG, Benrezzak S, Koos AA, Konya Z, Ruther MG, Blau WJ, Fonseca A, Nagy JB, Biro LP, Minett AI, Panhuis M (2002) J Am Chem Soc 124:13694

    Article  CAS  Google Scholar 

  43. Wang J (2005) Electroanalysis 17:7

    Article  CAS  Google Scholar 

  44. Sherigara BS, Kutner W, Souza FD (2003) Electroanalysis 15:753

    Article  CAS  Google Scholar 

  45. Davis JJ, Green MLH, Hill HAO, Leung YC, Sadler JO, Sloan JSC, Tsang SC (1998) Inorg Chim Acta 272:261

    Article  CAS  Google Scholar 

  46. Tsang SC, Davis JJ, Green MLH, Hill HAO, Leung YC, Sadler JP (1995) J Chem Soc Chem Commun 1803

  47. Davis JJ, Coles RJ, Hill HAO (1997) J Electroanal Chem 440:279

    CAS  Google Scholar 

  48. Wang J, Chen G, Wang M, Chatrathi MP (2004) Analyst 129:512

    Article  CAS  Google Scholar 

  49. Hrapovic S, Liu YL, Male KB, Luong JHT (2004) Anal Chem 76:1083

    Article  CAS  Google Scholar 

  50. Salimi A, Noorbakhsh A, Ghadermarzi M (2007) Sens Actuators B 123:530

    Article  Google Scholar 

  51. Salimi A, Hallaj R (2005) Talanta 66:967

    Article  CAS  Google Scholar 

  52. Salimi A, Noorbakhsh A, Ghadermarzi M (2005) Anal Biochem 344:16

    Article  CAS  Google Scholar 

  53. Salimi A, Noorbakhsh A, Soltanian S (2006) Electroanalysis 18:16

    Google Scholar 

  54. Salimi A, Mamkhezri H, Mohebbi S (2006) Electrochem Commun 8:688

    Article  CAS  Google Scholar 

  55. Sullivan BP, Calvert JM, Meyer TJ (1980) Inorg Chem 19:1404

    Article  CAS  Google Scholar 

  56. Crutchley RJ, McCaw K, Lee FL, Gabe EJ (1990) Inorg Chem 29:2576

    Article  CAS  Google Scholar 

  57. Bodige S, Mac Donnell FM (1997) Tetrahedron Lett 38:8159

    Article  CAS  Google Scholar 

  58. Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York, p 231

    Google Scholar 

  59. Li J, Cassell A, Delzeit L, Han J, Meyyapan M (2002) J Phys Chem B 106:9299

    Article  CAS  Google Scholar 

  60. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Carbon 47:507

    Article  Google Scholar 

  61. Laviron E (1974) J Electroanal Chem 52:355

    Article  CAS  Google Scholar 

  62. Wang J (1994) Analytical electrochemistry. VCH, New York

    Google Scholar 

  63. Andriex CP, Saveant JM (1978) J Electroanal Chem 93:163

    Article  Google Scholar 

Download references

Acknowledgments

The financial supports of Iranian Nanotechnology inventive and Research Office of University of Kurdistan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Salimi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salimi, A., Izadi, M., Hallaj, R. et al. Electrocatalytic reduction of NAD+ at glassy carbon electrode modified with single-walled carbon nanotubes and Ru(III) complexes. J Solid State Electrochem 13, 485–496 (2009). https://doi.org/10.1007/s10008-008-0583-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0583-6

Keywords

Navigation