Skip to main content
Log in

The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiNi0.5Mn1.5O4 cathode materials were successfully prepared by sol–gel method with two different Li sources. The effect of both lithium acetate and lithium hydroxide on physical and electrochemical performances of LiNi0.5Mn1.5O4 was investigated by scanning electron microscopy, Fourier transform infrared, X-ray diffraction, and electrochemical method. The structure of both samples is confirmed as typical cubic spinel with Fd3m space group, whichever lithium salt is adopted. The grain size of LiNi0.5Mn1.5O4 powder and its electrochemical behaviors are strongly affected by Li sources. For the samples prepared with lithium acetate, more spinel nucleation should form during the precalcination process, which was stimulated by the heat released from the combustion of extra organic acetate group. Therefore, the particle size of the obtained powder presents smaller average and wider distribution, which facilitates the initial discharge capacity and deteriorates the cycling performance. More seriously, there exists cation replacement of Li sites by transition metal elements, which causes channel block for Li ion transference and deteriorates the rate capability. The compound obtained with lithium hydroxide exhibits better electrochemical responses in terms of both cycling and rate properties due to higher crystallinity, moderate particle size, narrow size distribution and lower transition cation substitute content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu XL, Jiang LY, Cao FF, Guo YG, Wan LJ (2009) Adv Mater 21:2710–2714

    Article  CAS  Google Scholar 

  2. Xie HM, Wang RS, Ying JR, Zhang LY, Jalbout AF, Yu HY, Yang GL, Pan XM, Su ZM (2006) Adv Mater 18:2609–2613

    Article  CAS  Google Scholar 

  3. Tarascon JM, Armond M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  4. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng HL, Huggins RA, Cui Y (2008) Nano Lett 8:3948–3952

    Article  CAS  Google Scholar 

  5. Taniguchi I (2005) Ind Eng Chem Res 44:6560–6565

    Article  CAS  Google Scholar 

  6. Vidu R, Stroeve P (2004) Ind Eng Chem Res 43:3314–3324

    Article  CAS  Google Scholar 

  7. Xiao LF, Zhao YQ, Yang YY, Cao YL, Ai XP, Yang HX (2008) Electrochim Acta 54:545–550

    Article  CAS  Google Scholar 

  8. Ohzuku T, Takeda S, Iwanaga M (1999) J Power Sources 81–82:90–94

    Article  Google Scholar 

  9. Kim JH, Myung ST, Sun YK (2004) Electrochim Acta 49:219–227

    Article  CAS  Google Scholar 

  10. Sun YK, Hong KJ, Prakash J, Amine K (2002) Electrochem Commun 4:344–348

    Article  CAS  Google Scholar 

  11. Alcántara R, Jaraba M, Lavela P, Tirado JL (2002) Electrochim Acta 47:1829–1835

    Article  Google Scholar 

  12. Idemoto Y, Narai I, Koura N (2003) J Power Sources 119:125–129

    Article  Google Scholar 

  13. Fang HS, Wang ZX, Li XH, Guo HJ, Peng WJ (2006) J Power Sources 153:174–176

    Article  CAS  Google Scholar 

  14. Myung ST, Komaba S, Kumagai N, Yashiro H, Chung HT, Cho TH (2002) Electrochim Acta 47:2543–2549

    Article  CAS  Google Scholar 

  15. Lee YS, Sun YK, Ota S, Miyashita T, Yoshio M (2002) Electrochem Commun 4:989–994

    Article  CAS  Google Scholar 

  16. Fan YK, Wang JM, Ye XB, Zhang JQ (2007) Mater Chem Phys 103:19–23

    Article  CAS  Google Scholar 

  17. Fu LJ, Liu H, Li C, Wu YP, Rahm E, Holze R, Wu HQ (2005) Prog Mater Sci 50:881–928

    Article  CAS  Google Scholar 

  18. Liu ZQ, Wang WL, Liu XM, Wu MC, Li D, Zeng Z (2004) J Solid State Chem 177:1585–1591

    Article  CAS  Google Scholar 

  19. Guo HJ, Li XH, Wang ZX, Peng WJ, Cao X, Li HF (2009) J Power Sources 189:95–100

    Article  CAS  Google Scholar 

  20. Kanamura K, Koizumi S, Dokko K (2008) J Mater Sci 43:2138–2142

    Article  CAS  Google Scholar 

  21. Song MY, Song J, Bang EY, Mumm DR (2009) Ceram Int 35:1625–1631

    Article  CAS  Google Scholar 

  22. Liu JJ, Qiu WH, Yu LY, Zhao HL, Li T (2008) J Alloys Compd 449:326–330

    Article  CAS  Google Scholar 

  23. Hon YM, Lin SP, Fung KZ, Hon MH (2002) J Eur Ceram Soc 22:653–660

    Article  CAS  Google Scholar 

  24. Bhuiyan MIH, Mavinic DS, Beckie RD (2008) J Cryst Growth 310:1187–1194

    Article  CAS  Google Scholar 

  25. Lin RY, Zhang JY, Zhang PX (2002) J Cryst Growth 245:309–320

    Article  CAS  Google Scholar 

  26. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Chem Mater 16:906–914

    Article  CAS  Google Scholar 

  27. Alcantara R, Jaraba M, Lavela P, Trado JL, Zhecheva E, Stoyanova R (2004) Chem Mater 16:1573–1579

    Article  CAS  Google Scholar 

  28. Kunduraci M, Al-Sharab JF, Amatucci GG (2006) Chem Mater 18:3585–3592

    Article  CAS  Google Scholar 

  29. Liu J, Manthiram A (2009) J Electrochem Soc 156:A66–A72

    Article  CAS  Google Scholar 

  30. Fang HS, Li LP, Li GS (2007) J Power Sources 167:223–227

    Article  CAS  Google Scholar 

  31. Oh SW, Park SH, Kim JH, Bae YC, Sun YK (2006) J Power Sources 157:464–470

    Article  CAS  Google Scholar 

  32. Nieto S, Majumder SB, Katiyar RS (2004) J Power Sources 136:88–98

    Article  CAS  Google Scholar 

  33. Aklalouch M, Rojas RM, Rojo JM, Saadoune I, Amarilla JM (2009) Electrochim Acta 54:7542–7550

    Article  CAS  Google Scholar 

  34. Zhong QM, Bonakdarpour A, Zhang MJ, Gao Y, Dahn JR (1997) J Electrochem Soc 144:205–213

    Article  CAS  Google Scholar 

  35. Arrebola JC, Caballero A, Cruz M, Hernán L, Morales J, Castellón ER (2006) Adv Funct Mater 16:1904–1912

    Article  CAS  Google Scholar 

  36. Wang HL, Xia H, Lai MO, Lu L (2009) Electrochem Commun 11:1539–1542

    Article  CAS  Google Scholar 

  37. Park SB, Eom WS, Cho WI, Jang H (2006) J Power Sources 159:679–684

    Article  CAS  Google Scholar 

  38. Markovsky B, Talyossef Y, Salitra G, Aurbach D, Kim HJ, Choi S (2004) Electrochem Commun 6:821–826

    Article  CAS  Google Scholar 

  39. Takahashi K, Saitoh M, Sano M, Fujita M, Kifune K (2004) J Electrochem Soc 151:A173–A177

    Article  CAS  Google Scholar 

  40. Hwang BJ, Wu YW, Venkateswarlu M, Cheng MY, Santhanam R (2009) J Power Sources 193:828–833

    Article  CAS  Google Scholar 

  41. Raja MW, Mahanty S, Basu RN (2009) Solid State Ionics 180:1261–1266

    Article  CAS  Google Scholar 

  42. Arrebola JC, Caballero A, Hernán L, Morales J (2005) Electrochem Solid-State Lett 8:A641–A645

    Article  CAS  Google Scholar 

  43. Takahashi Y, Sasaoka H, Kuzuo R, Kijima N, Akimoto J (2006) Electrochem Solid-State Lett 9:A203–A206

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Funds for Creative Research Groups of China (no. 50821002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kening Sun or Naiqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Sun, K., Lei, Z. et al. The influence of Li sources on physical and electrochemical properties of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries. J Solid State Electrochem 15, 391–397 (2011). https://doi.org/10.1007/s10008-010-1103-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1103-z

Keyword

Navigation