Skip to main content

Advertisement

Log in

Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Binderless carbon nanotubes aerogel (CNAG) composites represent a new class of high-performing electrodes for energy storage applications such as electrochemical double layer capacitors. The composites developed here differ significantly from these previously prepared with dispersion processes. The CNAG material was prepared by a molding procedure that is the synthesis by a chemical vapor deposition method to grow carbon nanotubes directly onto a microfibrous carbon paper substrate. Then the carbon aerogel is synthesized on the carbon nanotubes. The key feature of the method is eliminating the need of controlling the carbon nanotube concentration, which permits optimized dispersion processes to reinforce the aerogel's networks. The CNAG electrode delivered very high specific capacitances of 524 F g−1 in KOH electrolyte and 280 F g−1 in H2SO4 electrolyte. Furthermore, this better integration of carbon nanotubes in the matrix of carbon aerogel improved its resistance to the attack by the electrolyte and conferred an excellent cycle life over 5,000 cycles of charge–discharge in both electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burke A (2000) J Power Sources 91:37

    Article  CAS  Google Scholar 

  2. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nat Matters 5:366

    Article  Google Scholar 

  3. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) J Non-Cryst Solids 225:74

    Article  CAS  Google Scholar 

  4. Gouérec P, Talbi H, Miousse D, Tran-Van F, Dao LH, Lee KH (2001) J Electrochem Soc 148:A94

    Article  Google Scholar 

  5. Wei Y-Z, Fang B, Iwasa S, Kumagai M (2005) J Power Sources 141:386

    Article  CAS  Google Scholar 

  6. Wang J, Zhang SQ, Guo YZ, Shen J, Attia SM, Zhou B, Zheng GZ, Gui YS (2001) J Electrochem Soc 148:D75

    Article  CAS  Google Scholar 

  7. Talbi H, Just P-E, Dao LH (2003) J Appl Electrochem 33:465

    Article  CAS  Google Scholar 

  8. Li W, Pröbstle H, Fricke J (2003) J Non-Cryst Solids 325:1

    Article  CAS  Google Scholar 

  9. Long JW, Dening BM, McEvoy TM, Rolison DR (2004) J Non-Cryst Solids 350:97

    Article  CAS  Google Scholar 

  10. Hwang SW, Hyun S-H (2004) J Non-Cryst Solids 347:238

    Article  CAS  Google Scholar 

  11. Kim H-J, Kim J-H, Kim W-I, Suh DJ (2005) Korean J Chem Eng 22:740

    Article  CAS  Google Scholar 

  12. Bordjiba T, Mohamedi M, Dao LH (2007) Nanotechnology 18:035202

    Article  Google Scholar 

  13. Bordjiba T, Mohamedi M, Dao LH, Aïssa B, El Khakani MA (2007) Chem Phys Lett 441:88

    Article  CAS  Google Scholar 

  14. Bordjiba T, Mohamedi M, Dao LH (2007) J Power Sources 172:991

    Article  CAS  Google Scholar 

  15. Bordjiba T, Mohamedi M, Dao LH (2008) Electrochem Soc Trans 6:183

    CAS  Google Scholar 

  16. Bordjiba T, Mohamedi M, Dao LH (2008) J Electrochem Soc 155:A115

    Article  CAS  Google Scholar 

  17. Bordjiba T, Mohamedi M, Dao LH (2008) Adv Mater 20:815

    Article  CAS  Google Scholar 

  18. Aïssa B, Hamoudi Z, Takahashi H, Tohji K, Mohamedi M, El Khakani MA (2009) Electrochem Commun 11:862

    Article  Google Scholar 

  19. Frackowiak E, Béguin F (2001) Carbon 39:937

    Article  CAS  Google Scholar 

  20. Kinoshita K (1988) Carbon-electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  21. Shao Y, Yin G, Zhang J, Gao Y (2006) Electrochim Acta 51:5853

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences Engineering Research Council of Canada (NSERC), the Fonds Québécois pour la Recherche en Nature et Technologie (FQRNT), NanoQuébec, and the Centre Québécois pour les Matériaux Fonctionnels (CQMF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Bordjiba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordjiba, T., Mohamedi, M. Molding versus dispersion: effect of the preparation procedure on the capacitive and cycle life of carbon nanotubes aerogel composites. J Solid State Electrochem 15, 765–771 (2011). https://doi.org/10.1007/s10008-010-1155-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1155-0

Keywords

Navigation