Skip to main content
Log in

Nanocomposite solid polymeric electrolyte of 49% poly(methyl methacrylate)-grafted natural rubber–titanium dioxide–lithium tetrafluoroborate (MG49-TiO2-LiBF4)

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A nanocomposite polymer electrolyte consisting of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) as a polymer matrix, lithium tetrafluoroborate (LiBF4) as a dopant salt, and titanium dioxide (TiO2) as an inert ceramic filler was prepared by solution casting technique. The ceramic filler, TiO2, was synthesized in situ by a sol–gel process. The ionic conductivity was investigated by alternating current impedance spectroscopy. X-ray diffraction (XRD) was used to determine the structure of the electrolyte, and its morphology was examined by scanning electron microscopy (SEM). The highest conductivity, 1.4 × 10−5 S cm−1 was obtained at 30 wt.% of LiBF4 salt addition with 6 wt.% of TiO2 filler content. Ionic conductivity was found to increase with the increase of salt concentration. The optimum value of conductivity was found at 6 wt.% of TiO2. The XRD analysis revealed that the crystalline phase of the polymer host slightly decreased with the addition of salt and filler. The SEM analysis showed that the smoother the surface of the electrolyte, the higher its conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gray FM (1991) Solid polymer electrolyte—fundamentals and technological applications. RSC Material Monographs, London

    Google Scholar 

  2. Brandell D (2005) Understanding ionic conductivity in crystalline polymer electrolytes. Digital comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology 34, Uppsala Universitet

  3. Rajendran S, Sivakumar M, Subadevi R (2004) Mater Lett 58:641

    Article  CAS  Google Scholar 

  4. Agrawal RC (2007) Nanocomposite polymer electrolytes: materials and application aspects. Solid State Ion Proceeding, India

    Google Scholar 

  5. Johansson P, Jacobsson P (2004) Solid State Ion 170:73

    Article  CAS  Google Scholar 

  6. Ahmad S, Agnihotry SA, Ahmad S (2008) J Appl Poly Sci 107:3042

    Article  CAS  Google Scholar 

  7. Alias Y, Ling I, Kumutha K (2005) Ionics 11:414

    Article  CAS  Google Scholar 

  8. Murata K, Izuchi S, Yoshihisa Y (2000) Electrochim Acta 45:1501

    Article  CAS  Google Scholar 

  9. Chung SH, Wang Y, Persi L, Croce F, Greenbaum SG, Scrosati B, Plichta (2001) J Power Sources 644:97

    Google Scholar 

  10. Liu Y, Lee JY, Hong L (2003) J Appl Poly Sci 89:2815

    Article  CAS  Google Scholar 

  11. Pan CY, Feng Q, Wang LJ, Zhang Q, Chao M (2007) J Cent South Univ Techno 03-0348-05

  12. Rajendren R, Ramesh M, Usha M (2008) J Power Sources 180:880

    Article  Google Scholar 

  13. Wang YJ, Kim D (2007) Electrochim Acta 52:3181

    Article  CAS  Google Scholar 

  14. Assamann SE, Widoniak J, Maret G (2004) Chem Matter 16:6

    Article  Google Scholar 

  15. Taslim R, Rahman MYA, Salleh MM, Umar AA, Ahmad A (2009) Phys B 404:1420

    Article  Google Scholar 

  16. Ramesh S, Ang GP (2010) Ionics 16:465

    Article  CAS  Google Scholar 

  17. Su’ait MS, Ahmad A, Rahman MYA (2008) Ionics 15:497

    Article  Google Scholar 

  18. Ahmad A, Rahman MYA, Ali MLM, Hashim H, Kalam FA (2007) Ionics 13:67

    Article  CAS  Google Scholar 

  19. Lin CW, Hung CL, Venkateswarlu M, Hwang BJ (2005) J Power Sources 146:397–401

    Article  CAS  Google Scholar 

  20. Aravindan V, Vickaraman P (2009) Poly Eng Sci 49:2109

    Article  CAS  Google Scholar 

  21. Li ZH, Zhang HP, Zhang P, Wu YP, Zhou XD (2008) J Power Sources 184:562

    Article  CAS  Google Scholar 

  22. Shanmukaraj D, Wang GX, Murugan R, Liu HK (2008) J Phys Chem Solids 69:243

    Article  CAS  Google Scholar 

  23. Noor SAM, Ahmad A, Talib IA, Rahman MYA (2010) Ionics 16:161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their gratitude towards Universiti Kebangsaan Malaysia (UKM) for allowing this research to be carried out. This work was supported by the UKM grant of UKM-GUP-NBT-082-27-108 and UKM-OUP-NBT-28-142-209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Low, S.P., Ahmad, A., Hamzah, H. et al. Nanocomposite solid polymeric electrolyte of 49% poly(methyl methacrylate)-grafted natural rubber–titanium dioxide–lithium tetrafluoroborate (MG49-TiO2-LiBF4). J Solid State Electrochem 15, 2611–2618 (2011). https://doi.org/10.1007/s10008-010-1252-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1252-0

Keywords

Navigation