Skip to main content
Log in

Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

An uncomplicated Pechini-assisted sol–gel process in aqueous solutions is used for the synthesis of Li–Co phosphate powders as cathode materials. The powders are annealed under different conditions in flowing nitrogen and in flowing air. The structural, morphological, and electrochemical properties are strongly dependent upon the annealing conditions. After the treatment in air, the X-ray diffraction (XRD) patterns reveal the presence of LiCoPO4 as a single phase. The morphology of the powders consists of a homogeneous and good interconnected blend of grains with different sizes; the cyclic voltammetry (CV) curves show a very good reversibility with very close values of the mean peak maxima in the cathodic region. The electrochemical measurements deliver a discharge specific capacity of 37 mAhg−1 at a discharge rate of C/25 at room temperature. After annealing in nitrogen, the XRD analysis detects the formation of Li4P2O7 and to Co2P as secondary phases; the morphological investigation indicated that the LiCoPO4 particles took shape of prisms with an average size of 2 μm. The CV curves are associated with a large polarization and poor irreversibility. The electrochemical measurements deliver a discharge specific capacity of 42 mAh g−1 at a discharge rate of C/25 at room temperature and lower capacity fade (approx. 35%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han DW, Kang YM, Yin RZ, Song MS, Kwon HS (2009) Electrochem Commun 11:137–140

    Article  CAS  Google Scholar 

  2. Pahdi AK, Nanjundaswami KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  Google Scholar 

  3. Li G, Azuma H, Tohda M (2002) Electrochem Solid-State Lett 5:A135

    Article  CAS  Google Scholar 

  4. Huang H, Yin SC, Kerr T, Nazar LF (2002) Adv Mater 14:1525

    Article  CAS  Google Scholar 

  5. Yin SC, Strobel P, Anne M, Nazar LF (2003) J Am Chem Soc 125:10402

    Article  CAS  Google Scholar 

  6. Barker J, Saidi MY, Swoyer JL (2002) US Patent 6,387,568

  7. Barker J, Saidi MY, Swoyer JL (2003) Electrochem Solid-State Lett 6:A1

    Article  CAS  Google Scholar 

  8. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshio A (2001) J Power Sources 97:98–430

    Article  Google Scholar 

  9. Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitajima Y (2004) Chem Mater 16:3399

    Article  CAS  Google Scholar 

  10. Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid-State Lett 3:178–179

    Article  CAS  Google Scholar 

  11. Loris JM, Pėrez Vicente C, Tirado JL (2002) Electrochem Solid-State Lett 5:A234–A237

    Article  Google Scholar 

  12. Jin B, Gu HB, Kim KW (2008) J Solid-State Electrochem 12:105–111

    Article  CAS  Google Scholar 

  13. Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Electrochem Solid-State Lett 11(6):A89–A93

    Article  CAS  Google Scholar 

  14. Gangulibabu, Bhuvaneswari D, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) J Sol–Gel Sci Technol 49:137–144

    Article  CAS  Google Scholar 

  15. Bhuwaneswari MS, Dimesso L, Jaegermann W (2010) J Sol–Gel Sci Technol 56:320–326

    Article  CAS  Google Scholar 

  16. Vasanthi R, Kalpana D, Renganathan NG (2008) J Solid-State Electrochem 12:961–969

    Article  CAS  Google Scholar 

  17. Dimesso L, Spanheimer C, Jacke S, Jaegermann W (2011) J Power Sources 196:6729–6734

    Article  CAS  Google Scholar 

  18. Dimesso L, Jacke S, Spanheimer C, Jaegermann W (2011) J Alloys Comps 509:3777–3782

    Article  CAS  Google Scholar 

  19. Zaghib K, Charest P, Guerfi A, Shim J, Perrier M, Kiebel K (2004) J Power Sources 134:124

    Article  CAS  Google Scholar 

  20. Rho YH, Kanamura K, Fujisaki M, Hamagami J, Suda S, Umegaki T (2002) Solid State Ionics 151(1–4):151–157

    Article  CAS  Google Scholar 

  21. Thissen A, Ensling D, Liberatore M, Wu QH, Fernandez Madrigal FJ, Bhuvaneswari MS, Hunger R, Jaegermann W (2009) Ionics 15:393–403

    Article  CAS  Google Scholar 

  22. Merck. http://www.merck-chemicals.com. Accessed 31 January 2010

  23. Schmidt M, Heider U, Kuehner K, Oesten R, Jungnitz M, Ignatev N, Sartori P (2001) J Power Sources 97–98:557

    Article  Google Scholar 

  24. Gnanaraj JS, Zinigrad E, Levi MD, Aurbach D, Schmidt M (2003) J Power Sources 119–121:799–804

    Article  Google Scholar 

  25. Koleva V, Zhecheva E, Stoyanova R (2010) Eur J Inorg Chem 2010:4091–4099

    Article  Google Scholar 

  26. Saint-Martin R (2008) Franger S J Crystal Growth 310:861–864

    Article  CAS  Google Scholar 

  27. Ellis B, Herle Subramanya P, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Faraday Discuss 134:119–141

    Article  CAS  Google Scholar 

  28. Kim DH, Kim TR, Im JS, Kang JW, Kim J (2007) J Phys Scr T129:31

    Article  CAS  Google Scholar 

  29. Huang X, Ma J, Wu P, Hu Y, Dai Z, Zhu Z, Chen H, Wang H (2005) Mater Lett 59:578–582

    Article  CAS  Google Scholar 

  30. Ehrenberg H, Bramnik NN, Senyshyn A, Fuess H (2009) Solid State Sciences 11:18–23

    Article  CAS  Google Scholar 

  31. Tan L, Luo Z, Liu H, Yu Y (2010) J Alloys Comps 502:407–410

    Article  CAS  Google Scholar 

  32. Rho YH, Nazar LF, Perry L, Ryan D (2007) J Electrochem Soc 154(4):A283–A289

    Article  CAS  Google Scholar 

  33. Xie J, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O (2009) J Power Sources 192:689–692

    Article  CAS  Google Scholar 

  34. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908–915

    Article  CAS  Google Scholar 

  35. Castro L, Dedryvère R, El Khalifi M, Lippens P, Bréger J, Tessier C, Gonbeau D (2010) J Phys Chem 114:17995–18000

    CAS  Google Scholar 

  36. Dahn J, Jiang J, Moshurchak L, Buhrmester C, Wang RL (2005) Electrochem Soc Interface 14(4):27–31

    CAS  Google Scholar 

Download references

Acknowledgments

Many thanks are owed to Mr. J.-C. Jaud for the technical assistance in the XRD analysis. The authors thank the Deutsche Forschungsgemeinschaft (DFG) (Sonderinitiativeproject: PAK-177) for the financial support during this work. The DFG encourage and financially support the publication of the results during the projects. The DFG have no involvement in the study design, in analysis and interpretation of data, in the writing of the report, and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucangelo Dimesso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimesso, L., Jacke, S., Spanheimer, C. et al. Investigation on LiCoPO4 powders as cathode materials annealed under different atmospheres. J Solid State Electrochem 16, 911–919 (2012). https://doi.org/10.1007/s10008-011-1441-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1441-5

Keywords

Navigation