Skip to main content
Log in

Influence of highly efficient PbS counter electrode on photovoltaic performance of CdSe quantum dots-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

PbS electrode with high catalytic activity to Sn 2− reduction certificated by the measurements of electrochemical impedance spectroscopy and cyclic voltammetry was prepared by a simple method. The high catalytic activity makes it be a low-cost alternative counter electrode to platinum (Pt) to be used in quantum dots-sensitized solar cells (QDSSCs) based on polysulfide electrolyte. The photovoltaic performance enhancement of the quantum dots (QDs)-sensitized semiconductor thin films due to the PbS counter electrode was evaluated by fabricating QDSSCs based on CdSe QDs-sensitized ZnO (SnO2) thin film. CdSe QDs-sensitized ZnO thin film has the lower internal total series resistance and electron transmission time, the higher electron lifetime and electron collection efficiency than the CdSe QDs-sensitized SnO2 thin film. Replacing the Pt counter electrode with the PbS counter electrode leads to more improvement on the short circuit photocurrent density for QDSSC based on the ZnO thin film than the SnO2 thin film. Therefore, the process to limit the photovoltaic performance of CdSe QDs-sensitized solar cell and the possible way to improve the photovoltaic performance were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’regan B, Grätzel M (1991) Nature 353:737–739

    Article  Google Scholar 

  2. Nozik A (2002) Phys E 14:115–120

    Article  CAS  Google Scholar 

  3. Schaller RD, Klimov VI (2004) Phys Rev Lett 92:186601

    Article  CAS  Google Scholar 

  4. Sambur JB, Novet T, Parkinson BA (2010) Science 330:63–66

    Article  CAS  Google Scholar 

  5. Paul GS, Kim JH, Kim MS, Do K, Yu JS (2012) ACS Appl Mater Interfaces 4:375–381

    Article  CAS  Google Scholar 

  6. Zhao FY, Tang GS, Zhang JB, Lin Y (2012) Electrochim Acta 62:396–401

    Article  CAS  Google Scholar 

  7. Braga A, Giménez S, Concina I, Vomiero A, Mora-Seró I (2011) J Phys Chem Lett 2:454–460

    Article  CAS  Google Scholar 

  8. Jovanovski V (2011) González-Pedro V, Giménez S, Azaceta E, Cabañero G, Grande H, Tena-Zaera R, Mora-Seró I, Bisquert J. J Am Chem Soc 133:20156–20159

    Article  CAS  Google Scholar 

  9. Lee YL, Chang CH (2008) J Power Sources 185:584–588

    Article  CAS  Google Scholar 

  10. Chakrapani V, Baker D, Kamat PV (2011) J Am Chem Soc 133:9607–9615

    Article  CAS  Google Scholar 

  11. Li L, Yang X, Gao J, Tian H, Zhao J, Hagfeldt A, Sun L (2011) J Am Chem Soc 133:8458–8460

    Article  CAS  Google Scholar 

  12. Radich JG, Dwyer R, Kamat PV (2011) J Phys Chem Lett 2:2453–2460

    Article  CAS  Google Scholar 

  13. Hao F, Lin H, Liu Y, Wang N, Li W, Li J (2011) ACS Appl Mater Interfaces 3:3916–3920

    Article  CAS  Google Scholar 

  14. Fu NQ, Xiao XR, Zhou XW, Zhang JB, Lin Y (2012) J Phys Chem C 116:2850–2857

    Article  CAS  Google Scholar 

  15. Chen LL, Tan WW, Zhang JB, Zhou XW, Zhang XL, Lin Y (2010) Electrochim Acta 55:3721–3726

    Article  CAS  Google Scholar 

  16. Yang Z, Chen CY, Liu CW, Li CL, Chang HT (2011) Adv Energy Mater 1:259–264

    Article  CAS  Google Scholar 

  17. González-Pedro V, Xu X, Mora-Seró I, Bisquert J (2010) ACS Nano 4:5783–5790

    Article  Google Scholar 

  18. Hossain MA, Jennings JR, Koh ZY, Wang Q (2011) ACS Nano 5:3172–3181

    Article  CAS  Google Scholar 

  19. Li SJ, Chen Z, Zhang WF (2012) Mater Lett 72:22–24

    Article  CAS  Google Scholar 

  20. Yang Z, Chen CY, Liu CW, Chang HT (2010) Chem Commun 46:5485–5487

    Article  CAS  Google Scholar 

  21. Yang Z, Chen CY, Chang HT (2011) Sol Energy Mater Sol Cells 95:2867–2873

    Article  CAS  Google Scholar 

  22. Faber MS, Park K (2013) Cabán-Acevedo M, Santra PK, Jin S. J Phys Chem Lett 4:1843–1849

    Article  CAS  Google Scholar 

  23. Tachan Z, Shalom M, Hod I, Rühle S, Tirosh S, Zaban A (2011) J Phys Chem C 115:6162–6166

    Article  CAS  Google Scholar 

  24. Joshi P, Zhang L, Chen Q, Galipeau D, Fong H, Qiao Q (2010) ACS Appl Mater Interfaces 2:3572–3577

    Article  CAS  Google Scholar 

  25. Kang DY, Lee Y, Cho CY, Moon JH (2012) Langmuir 28:7033–7038

    Article  CAS  Google Scholar 

  26. Samadpour M, Giménez S, Boix PP, Shen Q, Calvoe ME, Taghavinia N (2012) Iraji zad A, Toyoda T, Mígueze H, Mora-Seró I. Electrochim Acta 75:139–147

    Article  CAS  Google Scholar 

  27. Song X, Wang M, Shi Y, Deng J, Yang Z, Yao X (2012) Electrochim Acta 81:260–267

    Article  CAS  Google Scholar 

  28. Lightcap IV, Kamat PV (2012) J Am Chem Soc 134:7109–7116

    Article  CAS  Google Scholar 

  29. Sung SD, Lim I, Kang P, Lee C, Lee WI (2013) Chem Commun 49:6054–6056

    Article  CAS  Google Scholar 

  30. Rühle S, Yahav S, Greenwald S, Zaban A (2012) J Phys Chem C 116:17473–17478

    Article  Google Scholar 

  31. Tan WW, Yin X, Zhou XW, Zhang JB, Xiao XR, Lin Y (2009) Electrochim Acta 54:4467–4472

    Article  CAS  Google Scholar 

  32. Gorer S, Hodes G (1994) J Phys Chem 98:5338–5346

    Article  CAS  Google Scholar 

  33. Fan SQ, Fang B, Kim JH, Jeong B, Kim C, Yu JS, Ko J (2010) Langmuir 26:13644–13649

    Article  CAS  Google Scholar 

  34. Hauch A, Georg A (2001) Electrochim Acta 46:3457–3466

    Article  CAS  Google Scholar 

  35. Murakami TN, Ito S, Wang Q, Nazzeruddin MK, Bessho T, Caser I, Liska P, Humphry-Baker R, Comte P, Péchy P, Grätzel M (2006) J Electrochem Soc 153:A2255–A2261

    Article  CAS  Google Scholar 

  36. Hamann TW, Jensen RA, Martinson ABF, Ryswykac HV, Hupp JT (2008) Energy Environ Sci 1:66–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (No. 20873162, No. 21273160) and the Program for Excellent Introduced Talents of Tianjin Normal University in China (5RL116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Bo Zhang or Guang Shi Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J.B., Zhao, F.Y., Tang, G.S. et al. Influence of highly efficient PbS counter electrode on photovoltaic performance of CdSe quantum dots-sensitized solar cells. J Solid State Electrochem 17, 2909–2915 (2013). https://doi.org/10.1007/s10008-013-2210-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2210-4

Keywords

Navigation