Skip to main content
Log in

Efficient oxidation of hydrazine using amine-functionalized cobalt and nickel porphyrin-modified electrodes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The meso-tetra(para-aminophenyl) porphyrinatocobalt(II) (Co(II)MTpAP) and meso-tetra(para-aminophenyl)porphyrinatonickel(II) (Ni(II)MTpAP) were self-assembled on a glassy carbon electrode (GCE) and were utilized for the oxidation of hydrazine. The oxidation of hydrazine at the self-assembled monolayers (SAMs) of Co(II)MTpAP and Ni(II)MTpAP occurred at −0.20 and 0.42 V, respectively. When compared to the SAM of Ni(II)MTpAP, Co(II)MTpAP SAM not only decreased the overpotential of hydrazine oxidation but also enormously increased its current. The oxidation of hydrazine was influenced by pH. While increasing the pH, the oxidation potential of hydrazine was shifted towards a less positive potential. Further, an inverted shape cyclic voltammogram (CV) was observed for the oxidation of hydrazine at Co(II)MTpAP-modified GCE, whereas a normal CV curve was observed at Ni(II)MTpAP-modified GCE. The appearance of the inverted shape peak for hydrazine oxidation at the SAM of Co(II)MTpAP is due to the oxidation of axially ligated hydrazine molecules during the reverse potential scan. The hydrazine oxidation was also performed at amine-functionalized cobalt and nickel phthalocyanine-modified electrodes in order to study the influence of a macrocyclic ring. Irrespective of the macrocyclic ring, an inverted shape CV was observed at cobalt phthalocyanine-modified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) J Power Sources 155:95–110

    Article  CAS  Google Scholar 

  2. Ji X, Lee KT, Holden R, Zhang L, Zhang J, Botton GA, Couillard M, Nazar LF (2010) Nat Chem 2:286–293

    Article  CAS  Google Scholar 

  3. Serov A, Kwak C (2010) App Catal B 98:1–9

    Article  CAS  Google Scholar 

  4. Golabi SM, Noor-Mohammadi F (1998) J Solid State Electrochem 2:30–37

    CAS  Google Scholar 

  5. Razmi-Nerbin H, Pournaghi-Azar MH (2002) J Solid State Electrochem 6:126–133

    CAS  Google Scholar 

  6. Zare HR, Sobhani Z, Mazloum-Ardakani M (2007) J Solid State Electrochem 11:971–979

    CAS  Google Scholar 

  7. Duarte JC, Luz RCS, Damos FS, Oliveira AB, Kubota LT (2007) J Solid State Electrochem 11:631–638

    CAS  Google Scholar 

  8. Adekunle AS, Ozoemena KI (2008) J Solid State Electrochem 12:1325–1336

    CAS  Google Scholar 

  9. Morais A, Pissetti FL, Lucho AMS, Gushikem Y (2010) J Solid State Electrochem 14:1383–1390

    Google Scholar 

  10. Mazloum-Ardakani M, Rajabi H, Mirjalili BBF, Beitollahi H, Akbari A (2010) J Solid State Electrochem 14:2285–2292

    CAS  Google Scholar 

  11. Yin Z, Liu L, Yang Z (2011) J Solid State Electrochem 15:821–827

    CAS  Google Scholar 

  12. You Y, Yang Y, Yang Z (2013) J Solid State Electrochem 17:701–706

    CAS  Google Scholar 

  13. Kondratiev VV, Babkova TA, Tolstopjatova EG (2013) J Solid State Electrochem 17:1621–1630

    CAS  Google Scholar 

  14. Kocak S, Alisen B (2014) Sens Actuators B Chem 196:610–618

    Article  CAS  Google Scholar 

  15. Xu F, Zhao L, Zhao F, Deng L, Hu L, Zeng B (2014) Int J Electrochem Sci 9:2832–2847

    Google Scholar 

  16. Biesaga M, Pyrzynska K, Trozanowicz M (2000) Talanta 51:209–224

    Article  CAS  Google Scholar 

  17. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  18. Ardiles P, Trollund E, Isaacs M, Armijo F, Canales JC, Aguirre MJ, Canales MJ (2001) J Mol Catal A Chem 165:169–175

    Article  CAS  Google Scholar 

  19. Wang B, Cao X (1991) J Electroanal Chem 309:147–158

    Article  CAS  Google Scholar 

  20. Pang D-W, Deng B-H, Wang Z-L (1994) Electrochim Acta 39:847–851

    Article  CAS  Google Scholar 

  21. Bravo P, Isaacs F, Ramirez G, Azocar I, Trollund E, Aguirre MJ (2007) J Coord Chem 60:2499–2507

    Article  CAS  Google Scholar 

  22. Guerra SV, Xavier CR, Nakagaki S, Kubota LT (1998) Electroanalysis 10:462–466

    Article  CAS  Google Scholar 

  23. Pessoa CA, Gushikem Y, Nakagaki S (2002) Electroanalysis 14:1072–1076

    Article  CAS  Google Scholar 

  24. Yamazaki S-I, Ioroi T, Tanimoto K, Yasuda K, Asazawa K, Yamaguchi S, Tanaka H (2012) J Power Sources 204:79–84

    Article  CAS  Google Scholar 

  25. George RC, Mugadza T, Khene S, Egharevba GO, Nyokong T (2011) Electroanalysis 23:1699–1078

    Article  CAS  Google Scholar 

  26. Ozoemena KI (2006) Sensors 6:874–891

    Article  CAS  Google Scholar 

  27. Isaacs M, Aguirre MJ, Toro-Labbe A, Costamagna J, Paez M, Zagal JH (1998) Electrochim Acta 43:1821–1827

    Article  CAS  Google Scholar 

  28. Quintino MSM, Araki K, Toma HE, Angnes L (2008) Talanta 74:730–735

    Article  CAS  Google Scholar 

  29. Miah MR, Ohsaka T (2007) Electrochim Acta 52:6378–6385

    Article  CAS  Google Scholar 

  30. Gobi KV, Tokuda K, Ohsaka T (1998) J Electroanal Chem 444:145–150

    Article  CAS  Google Scholar 

  31. Matsumoto F, Harada M, Koura N, Uesugi S (2003) Electrochem Commun 5:42–46

    Article  CAS  Google Scholar 

  32. Hwang S, Lee J, Kwak J (2005) J Electroanal Chem 579:143–152

    Article  CAS  Google Scholar 

  33. Green MP, Hanson KJ, Scherson DA, Xing X, Richter M, Ross PN, Carr R, Lindau I (1989) J Phys Chem 93:2181–2184

    CAS  Google Scholar 

  34. Campos CL, Roldan C, Aponte M, Ishiwaka Y, Cabrera CR (2005) J Electroanal Chem 581:206–215

    Article  CAS  Google Scholar 

  35. Tissot P, Margaretha P (1978) Electrochim Acta 23:1049–1052

    Article  CAS  Google Scholar 

  36. Roman AJ, Sevilla JM, Pineda T, Blazquez M (2001) J Electroanal Chem 517:15–19

    Article  CAS  Google Scholar 

  37. Shao C, Lu N, Deng Z (2009) J Electroanal Chem 629:15–22

    Article  CAS  Google Scholar 

  38. Jiang R, Dong S (1990) J Electroanal Chem 291:11–22

    Article  CAS  Google Scholar 

  39. Ulman A (1996) Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  40. Gallardo I, Pinson J, Vila N (2006) J Phys Chem B 110:19521–19529

    CAS  Google Scholar 

  41. Muthukumar P, John SA (2014) Electrochim Acta 115:197–205

    Article  CAS  Google Scholar 

  42. Rose E, Soleilhavoup M, Christ-Tommasino L, Moreau G, Collman JP, Quelquejeu M, Straumanis A (1998) J Org Chem 63:2042–2044

    Article  CAS  Google Scholar 

  43. Loewe SR, Ambroise A, Muthukumaran K, Padmaja K, Lysenko AB, Mathur G, Li Q, Bocian DF, Misra V, Lindsey JS (2004) J Org Chem 69:1453–1460

    Article  CAS  Google Scholar 

  44. Steinbach F, Zobel M (1979) J Chem Soc Faraday Trans 75:2587–2593

    Article  CAS  Google Scholar 

  45. Kokkinidis G, Jannakoudakis PD (1981) J Electroanal Chem 130:153–162

    Article  CAS  Google Scholar 

  46. Davies G, Warnqvist B (1970) Coord Chem Rev 5:349–378

    Article  CAS  Google Scholar 

  47. Oberst JL, Thorum MS, Gewirth AA (2012) J Phys Chem C 116:25257–25261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

P. Muthukumar thanks the University Grants Commission (UGC), New Delhi, for the award of Meritorious Student Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abraham John.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumar, P., John, S.A. Efficient oxidation of hydrazine using amine-functionalized cobalt and nickel porphyrin-modified electrodes. J Solid State Electrochem 18, 2393–2400 (2014). https://doi.org/10.1007/s10008-014-2491-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2491-2

Keywords

Navigation