Skip to main content
Log in

Pulse electrochemical machining of cast iron: a layer-based approach for modeling the steady-state dissolution current

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, a new layer-based simulation method for predicting the steady-state current of a pulse electrochemical machining (PECM) process is described. The basic concept of the method is a simple two-layer model consisting of a porous oxide and an adsorption layer. The oxide layer of PECM-machined samples, characterized by Raman spectroscopy and electron microscopy measurements, shows a similar structure as the oxide layer formed in electrochemical impedance spectroscopy (EIS) measurements. Therefore, the electronic equivalent circuit developed according to EIS results was used as analogy for the description of the overall impedance of the PECM model. The difference between the assumed layers of a PECM and EIS measurement is modeled with a material-dependent adjustment function. In this way, the calculated values of the equivalent circuit elements can be directly derived from experimental PECM data. It could be shown that the procedure allows the calculation of the steady-state current of PECM processes for different work conditions (e.g., pulse on-times, pulse frequencies). The procedure is applied to the electrochemical dissolution of three different types of cast iron in NaNO3 electrolyte on realistic machining conditions. All samples were characterized according to their chemical composition, graphite particle morphology/structure, and their anodic dissolution behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Masuzawa T, Tönshoff HK (1997) CIRP Ann Manuf. Technol 46(2):621–628

    Google Scholar 

  2. Rosenkranz C, Lohrengel MM, Schultze JW (2005) Electrochim Acta 50(10):2009–2016

    Article  CAS  Google Scholar 

  3. Senthilkumar C, Ganesam G, Karthikeyan R (2009) Int J Adv Manuf Technol 43:256–263

    Article  Google Scholar 

  4. Bähre D, Weber O, Rebschläger A (2013) Procedia CIRP 6:362–367

    Article  Google Scholar 

  5. McGeough JA (1974) Principles of Electrochemical Machining. Chapman and Hall, London

    Google Scholar 

  6. Klocke F, Zeis M, Klink A, Veselovac D (2012) Procedia CIRP 2:98–101

    Article  Google Scholar 

  7. Klocke F, Zeis M, Klink A, Veselovac D (2013) CIRP-JMST 6(3):198–203

    Google Scholar 

  8. Klocke F, Zeis M, Klink A, Veselovac D (2013) Procedia CIRP 6:369–373

    Google Scholar 

  9. Clifton D, Mount AR, Jardine DJ, Roth R (2001) J Mater Process Technol 108:338–348

    Article  CAS  Google Scholar 

  10. Klocke F, Zeis M, Klink A (2012) Key Eng Mater 504–508:1237–1242

    Article  Google Scholar 

  11. Sharma S, Jain VK, Shekhar R (2002) Int J Adv Manuf Technol 19(7):492–500

    Article  Google Scholar 

  12. Xu ZY, Xu Q, Zhu D, Gong T (2013) CIRP Ann Manuf Technol 62:187–190

    Article  Google Scholar 

  13. Weinmann M, Weber O, Bähre D, Munief W, Saumer M, Natter H (2014) Int J Electrochem Sci 9:3917–3927

    CAS  Google Scholar 

  14. Rajurkar PK, Zhu D, McGeough JA, Kozak J, De Silva A (1999) CIRP Ann Manuf Technol 48(2):567–579

    Article  Google Scholar 

  15. Lee ES, Shin TH, Kim BK, Baek SY (2010) Int J Precis Eng Man 11(1):113–118

    Article  CAS  Google Scholar 

  16. Bannard J (1975) J Appl Electrochem 5:89–90

    Article  Google Scholar 

  17. Lu X, Leng Y (2005) J Mater Process Technol 169(2):173–178

    Article  CAS  Google Scholar 

  18. Bhattacharyya B, Munda J, Malapati M (2004) Int J Mach Tools Manuf 44:1577–1589

    Article  Google Scholar 

  19. Bhattacharyya B, Mitra S, Boro AK (2002) Robot Comput Integr Manuf 18:283–289

    Article  Google Scholar 

  20. Bähre D, Rebschläger A, Weber O, Steuer P (2013) Procedia CIRP 6:384–389

    Article  Google Scholar 

  21. De Silva AKM, Altena HSJ, McGeough JA (2003) CIRP Ann Manuf Technol 52(1):165–168

    Article  Google Scholar 

  22. Rajurkar KP, Kozak J, Wie J, McGeough JA (1993) CIRP Ann Manuf Technol 42(1):231–234

    Article  Google Scholar 

  23. Rajurkar KP, Kozak J, Wie J, McGeough JA (1995) CIRP Ann Manuf Technol 44(1):177–180

    Article  Google Scholar 

  24. Van Tijun R (2008) COMSOL News 1:12

    Google Scholar 

  25. Hinduja S, Kunieda M (2013) CIRP Ann Manuf Technol 62:775–778

    Article  Google Scholar 

  26. Filatov EI (2001) J Mater Process Technol 109:327–332

    Article  Google Scholar 

  27. Kozak J (1998) J Mater Process Technol 76:170–175

    Article  Google Scholar 

  28. Mount AR, Clifton D, Howarth P, Sherlock A (2003) J Mater Process Technol 138:449–454

    Article  CAS  Google Scholar 

  29. Ebeid SJ, Hewidy MS, El-Taweel TA, Youssef AH (2004) J Mater Process Technol 149:432–438

    Article  Google Scholar 

  30. Volgin VM, Davydov AD (2004) J Mater Process Technol 149:466–471

    Article  CAS  Google Scholar 

  31. Hewidy MS, Ebeid SJ, El-Taweel TA, Youssef AH (2007) J Mater Process Technol 189:466–472

    Article  CAS  Google Scholar 

  32. Deconinck D, Van Damme S, Albu C, Hotoiu L, Deconinck J (2011) Electrochim Acta 56(16):5642–5649

    Article  CAS  Google Scholar 

  33. Deconinck D, Van Damme S, Deconinck J (2012) Electrochim Acta 60:321–328

    Article  CAS  Google Scholar 

  34. Deconinck D, Van Damme S, Deconinck J (2012) Electrochim Acta 69:120–127

    Article  CAS  Google Scholar 

  35. Deconinck D, Hoogsteen W, Deconinck J (2013) Electrochim Acta 109:161–173

    Article  Google Scholar 

  36. Hackert-Oschätzchen M, Jahn SF, Schubert A (2011) Proc of the COMSOL Conference

  37. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2007) J Applied Electrochem 37:1345–1355

    Article  CAS  Google Scholar 

  38. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2008) J Appl Electrochem 38:551–560

    Article  CAS  Google Scholar 

  39. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2008) J Appl Electrochem 39:791–798

    Article  Google Scholar 

  40. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2010) J Appl Electrochem 40:1395–1405

    Article  CAS  Google Scholar 

  41. Kozak J (2004) Bull Polish Acad Sci: Techn Sci 52:313–320

    CAS  Google Scholar 

  42. Deconinck D, Deconinck J (2013) Procedia CIRP 6:475–478

    Article  Google Scholar 

  43. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2008) J Appl Electrochem 38:1577–1582

    Article  CAS  Google Scholar 

  44. Smets N, Van Damme S, De Wilde D, Weyns G, Deconinck J (2009) J Appl Electrochem 39:2481–2488

    Article  CAS  Google Scholar 

  45. Van Damme S, Nelissen G, Van den Bossche B, Deconinck J (2006) J Appl Electrochem 36:1–10

    Article  Google Scholar 

  46. Kozak J, Gulbinowicz D, Gulbinowicz Z (2009) AIP Conference Proceedings 1127:174–185

    Article  CAS  Google Scholar 

  47. Hotoiu L, Deconinck J (2013) Procedia CIRP 6:469–474

    Article  Google Scholar 

  48. Kozak J (2013) LectNotes Eng Comput Sci 2:966–971

    Google Scholar 

  49. Kozak J, Gulbinowicz Z, Rozenek M (2010) 16th International Symposium on Electromachining. ISEM 2010:299–305

    Google Scholar 

  50. Boxhammer M, Altmannshofer S (2014) J Process Control 24:296–303

    Article  CAS  Google Scholar 

  51. Madsen IC, Scarlett AVY (2008) Quantitative phase analysis. In: Dinnebier RE, Billinge SJL (eds) Powder diffraction: theory and practice. RSC Publishing, Cambridge, pp 298–331

    Chapter  Google Scholar 

  52. Weber O, Weinmann W, Natter H, Bähre D (2014) J Appl Electrochem submitted

  53. Lohrengel MM, Rosenkranz C, Rohrbeck D (2007) Microchim Acta 156:163–166

    Article  Google Scholar 

  54. De Faria DLA, Venâncio Silva S, De Oliveira MT (1997) J Raman Spectrosc 28:873–878

    Article  Google Scholar 

  55. Oh SJ, Cook DC, Townsend HE (1998) Hyperfine Interact 112:59–66

    Article  CAS  Google Scholar 

  56. Weber O, Natter H, Rebschläger A, Bähre D (2011) Proceedings of the 7th International Symposium on Electrochemical Machining Technology 41–46

  57. Weber O, Bähre D (2013) Proceedings of the 9th International Symposium on Electrochemical Machining Technology 7:81–88

  58. Fang D, Li X, Li H, Peng Q (2013) Int J Electrochem Sci 8:2551–2565

    CAS  Google Scholar 

  59. Kaesche H (2011) Die Korrosion der Metalle. Springer, Heidelberg

    Google Scholar 

  60. Krüger U (2012) Galvanotechnik 6:22–25

    Google Scholar 

  61. Arrabal R, Pardo A, Merino MC, Mohedano M, Casajùs P, Paucar K, Garcés G (2012) Corros Sci 55:301–312

    Article  CAS  Google Scholar 

  62. Hochstrasser-Kurz S, Mueller Y, Latkoczy C, Virtanen S, Schmutz P (2007) Corros Sci 49(4):2002–2020

    Article  CAS  Google Scholar 

  63. Pan J, Thierry D, Leygraf C (1996) Electrochim Acta 41(7–8):1143–1153

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the European Union within the Interreg IV A program “Initiative PRECISE.” We thank Prof. Dr. Rolf Hempelmann and Dipl.-Ing. Martin Weinmann for fruitful discussions and the experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Natter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, O., Natter, H. & Bähre, D. Pulse electrochemical machining of cast iron: a layer-based approach for modeling the steady-state dissolution current. J Solid State Electrochem 19, 1265–1276 (2015). https://doi.org/10.1007/s10008-014-2735-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2735-1

Keywords

Navigation