Skip to main content
Log in

Gray to transmissive electrochromic switching based on electropolymerized PEDOT-ionic liquid functionalized graphene films

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A supporting electrolyte based on lithium perchlorate has been functionalized with graphene (ionic liquid functionalized graphene (IFGR)) by facile electrochemical exfoliation of graphite rods in aq. LiClO4 solution. Poly(3,4-ethylenedioxythiophene) (PEDOT)-IFGR films were prepared by electropolymerization of EDOT monomer with IFGR as supporting electrolyte in ethanol at static potential of 1.5 V. The Raman, SEM, and XPS analysis of PEDOT-IFGR film confirmed the presence of functionalized graphene in the film. The PEDOT-IFGR films showed good electrochemical properties, better ionic and electrical conductivity, significant band gap, and excellent spectroelectrochemical and electrochromic properties. The electrical conductivity of PEDOT-IFGR film was measured as about 3968 S cm−1. PEDOT-IFGR films at reduced state showed strong and broad absorption in the whole visible region and remarkable absorption at near-IR region. PEDOT-IFGR film showed electrochromic response between transmissive blue and darkish gray at redox potential. The color contrast (%T) between fully reduced and oxidized states of PEDOT-IFGR film is 25 % at λ max of 485 nm. The optical switching stability of PEDOT-IFGR film has retained 80 % of its electroactivity even after 500 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  3. Lee C, Wei XD, Kysar JW, Hone J (2008) Science 321:385–388

    Article  CAS  Google Scholar 

  4. Berger C, Song ZM, Li XB, Wu XS, Brown N, Naud C, Mayou D, Li TB, Hass J, Marchenkov AN, Conrad EH, First PN, Heer WA (2006) Science 312:1191–1196

    Article  CAS  Google Scholar 

  5. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282–286

    Article  CAS  Google Scholar 

  6. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Nat Nanotechnol 3:101–105

    Article  CAS  Google Scholar 

  7. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gunko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  8. Wang L, Lee K, Sun YY, Lucking M, Chen Z, Zhao JJ, Zhang SB (2009) ACS Nano 3:2995–3000

    Article  CAS  Google Scholar 

  9. Martin P (2009) Chem Rec 9:211–223

    Article  Google Scholar 

  10. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y (2008) Adv Mater 20:3924–3930

    Article  CAS  Google Scholar 

  11. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) ACS Nano 4:2865–2873

    Article  CAS  Google Scholar 

  12. Li XL, Wang XR, Zhang L, Lee SW, Dai HJ (2008) Science 319:1229–1232

    Article  CAS  Google Scholar 

  13. Liao L, Bai J, Lin YC, Qu Y, Huang Y, Duan X (2010) Adv Mater 22:1941–1945

    Article  CAS  Google Scholar 

  14. Barone V, Hod O, Scuseria GE (2006) Nano Lett 6:2748–2754

    Article  CAS  Google Scholar 

  15. Zhuang XD, Chen Y, Liu G, Li PP, Zhu CX, Kang ET, Noeh KG, Zhang B, Zhu JH, Li YX (2010) Adv Mater 22:1731

    Article  CAS  Google Scholar 

  16. Gunlycke D, Areshkin DA, Li J, Mintmire JW, White CT (2007) Nano Lett 7:3608–3611

    Article  CAS  Google Scholar 

  17. Chunder A, Pal T, Khondaker S, Zhai L (2010) J Phys Chem C 114:15129–15135

    Article  CAS  Google Scholar 

  18. Hwang JO, Lee DH, Kim JY, Han TH, Kim BH, Park M (2011) J Mater Chem 21:3432–3437

    Article  CAS  Google Scholar 

  19. Sutter PW, Flege JI, Sutter EA (2008) Nat Mater 7:406–411

    Article  CAS  Google Scholar 

  20. Liang X, Fu Z, Chou SY (2007) Nano Lett 7:3840–3844

    Article  CAS  Google Scholar 

  21. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Nano Lett 9:30–35

    Article  CAS  Google Scholar 

  22. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E (2009) Science 324:1312–1314

    Article  CAS  Google Scholar 

  23. Bae S, Kim HK, Lee YB, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song Y (2010) Nat Nano Technol 5:574–578

    Article  CAS  Google Scholar 

  24. Wassei JK, Kaner RB (2010) Mater Today 13:52–59

    Article  CAS  Google Scholar 

  25. Park S, Ruoff RS (2009) Nat Nanotechnol 4:217–224

    Article  CAS  Google Scholar 

  26. Park S, An J, Jung I, Piner RD, An SJ, Li X, Velamakanni A, Ruoff RS (2009) Nano Lett 9:1593–1597

    Article  CAS  Google Scholar 

  27. Chen CM, Yang QH, Yang YG, Lv W, Wen YF, Hou PX, Wang MZ, Cheng HM (2009) Adv Mater 21:3007–3011

    Article  CAS  Google Scholar 

  28. Wu X, Sprinkle M, Li X, Ming F, Berger C, de Heer WA (2008) Phys Rev Lett 101:026801-1-4

    Google Scholar 

  29. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) J Mater Chem 16:155–158

    Article  CAS  Google Scholar 

  30. Su CY, Xu Y, Zhang W, Zhao J, Tang X, Tsai CH, Li LJ (2009) Chem Mater 21:5674–5680

    Article  CAS  Google Scholar 

  31. Biswas S, Drzal LT (2009) Nano Lett 9:167–172

    Article  CAS  Google Scholar 

  32. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, GunKo YK (2008) Nat Nanotechnol 3:563–568

    Article  CAS  Google Scholar 

  33. Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Nat Nanotechnol 3:538–542

    Article  CAS  Google Scholar 

  34. Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Kim YH, Choi JY, Kim JM, Yoo JB (2009) Adv Mater 21:4383–4387

    Article  CAS  Google Scholar 

  35. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) J Am Chem Soc 125:6632–6633

    Article  CAS  Google Scholar 

  36. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) Adv Funct Mater 18:1518–1525

    Article  CAS  Google Scholar 

  37. Saxena AP, Deepa M, Joshi AG, Bhandari S, Avanish KS (2011) ACS Appl Mater Interfaces 3:115–1126

    Article  Google Scholar 

  38. Meng D, Yang T, Suyan M, Zhao C, Jiao K (2011) Anal Chim Acta 690:169–174

    Article  Google Scholar 

  39. Siju CR, Narasimha Rao K, Sindhu S (2013) J Opt. doi:10.1007/s12596-012-0113-x

    Google Scholar 

  40. Friend RH (2001) Pure Appl Chem 73:425–430

    Article  CAS  Google Scholar 

  41. Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y (2004) J Macromol Sci A Pure Appl Chem 41:1497–1511

    Article  Google Scholar 

  42. Schmidt-Mende L, Fechtenkotter A, Mullen K, Moons E, Friend RH, Mackenzie JD (2001) Science 293:1119–1122

    Article  CAS  Google Scholar 

  43. Liscio A, De Luca G, Nolde F, Palermo V, Meullen K, Samori PJ (2008) J Am Chem Soc 130:780–781

    Article  CAS  Google Scholar 

  44. Lina CY, Chena JG, Hub CW, Tunneyc JJ, Hoa KC (2009) Sens Actuat B 140:402–406

    Article  Google Scholar 

  45. Kwon OS, Park E, Kweon OY, Park SJ, Jang J (2010) Talanta 82:1338–1343

    Article  CAS  Google Scholar 

  46. Murugan AV, Gopinath CS, Vijayamohanan K (2005) Electrochem Commun 7:213–218

    Article  CAS  Google Scholar 

  47. Okuzakia H, Suzukia H, Itob T (2009) Synth Met 159:2233–2236

    Article  Google Scholar 

  48. Nagarajan S, Kumar J, Bruno FF, Samuelson LA, Nagarajan R (2008) Macromolecules 41:3049–3052

    Article  CAS  Google Scholar 

  49. Chikar JA, Hendricks JL, Richardson-Burns SM, Raphael Y, Pfingst BE, Martin DC (2012) Biomaterials 33:1982–1990

    Article  CAS  Google Scholar 

  50. Liesa F, Ocampo C, Aleman C, Armelin E, Oliver R, Estrany F (2006) J Appl Polym Sci 102:1592–1599

    Article  CAS  Google Scholar 

  51. Ocampo C, Oliver R, Armelin E, Aleman C, Estrany F (2006) J Polym Res 13:193–200

    Article  CAS  Google Scholar 

  52. Sindhu S, Narasimha RK, Ahuja S, Kumar A, Gopal ESR (2006) Mat Sci Eng B 132:39–42

    Article  CAS  Google Scholar 

  53. Vergaza R, Barriosa D, Penaa JMS, Marcosa C, Pozob C, Pomposo JA (2008) Sol Energ Mat Sol Cells 92:107–111

    Article  Google Scholar 

  54. Mecerreyes D, Marcilla R, Ochoteco E, Grande H, Pomposo JA, Vergaz R, Sanchez Pena JM (2004) Electrochim Acta 49:3555–3559

    Article  CAS  Google Scholar 

  55. Kok MM, Buechel M, Vulto SIE, Weijer P, Meulenkamp EA, de Winter SHPM, Mank AJG, Vorstenbosch HJM, Weijtens CHL, van Elsbergen V (2004) Phys Stat Sol A 201:1342–1359

    Article  Google Scholar 

  56. Elschner A, Kirchmeyer S, Lovenich W, Merker U, Reuter K (2011) PEDOT: principles and applications of an intrinsically conductive polymers, 1st edn. CRC Press, London

    Google Scholar 

  57. Lewis IN (1993) Chem Rev 93:2693–2730

    Article  CAS  Google Scholar 

  58. Tarang LKH, Tung TT, Kim TY, Yang WS, Kim H, Suh KS (2012) Polym Int 61:93–98

    Article  Google Scholar 

  59. Kiyoung J, Lee T, Choi HJ, Park JH, Lee DJ, Lee DW, Kim BS (2011) Langmuir 27:2014–2018

    Article  Google Scholar 

  60. Nanjundan AK, Hyun JC, Andreas B, Jong-Beom B, Jeong YT (2012) J Mater Chem 22:12268–12274

    Article  Google Scholar 

  61. Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y (2009) Nano Res 2:343–348

    Article  CAS  Google Scholar 

  62. Sakmeche N, Aeiyach S, Aaron JJ, Jouini M, Lacroix JC, Lacaze PC (1999) Langmuir 15:2566–2574

    Article  CAS  Google Scholar 

  63. Tamburri E, Orlanducci S, Toschi F, Terranova ML, Passeri D (2009) Synth Met 159:406–414

    Article  CAS  Google Scholar 

  64. Du XS, Yu ZZ, Dasari A, Ma J, Mo M, Meng Y, Mai YW (2008) Chem Mater 20:2066–2068

    Article  CAS  Google Scholar 

  65. Yan H, Okuzaki H (2009) Synth Met 159:2225–2228

    Article  CAS  Google Scholar 

  66. Wang GF, Tao XM, Xin JH, Fei B (2009) Nanoscale Res Lett 4:613–617

    Article  CAS  Google Scholar 

  67. Becerık I, Suzer S, Kadirgan F (2001) J Electroanal Chem 502:118–125

    Article  Google Scholar 

  68. Zhi WS, Haotian W, Po-Chun H, Zhang Q, Weiyang L, Guangyuan Z, Hongbin Y, Yi C (2014) Energy Environ Sci 7:672–676

    Article  Google Scholar 

  69. Schnyder B, Alliata D, Kotz R, Siegenthaler H (2001) Appl Surf Sci 173:221–232

    Article  CAS  Google Scholar 

  70. Liu N, Luo F, Wu H, Liu Y, Zhang C (2008) J Chen Adv Funct Mater 18:1518–1525

    Article  CAS  Google Scholar 

  71. Morkita T, Yamamota T (2001) J Organomet Chem 637–639:809–812

    Article  Google Scholar 

  72. Xia Y, Sun K, Ouyang J (2012) Adv Mater. doi:10.1002/adma.201104795

    Google Scholar 

  73. Reyes MR, Cruz IC, Sandoval RL (2010) J Phys Chem C 114:20220–20224

    Article  Google Scholar 

  74. Garreau S, Louarn G, Buisson JP, Froyer G, Lefrant S (1999) Macromolecules 32:6807–6812

    Article  CAS  Google Scholar 

  75. Hass R, Canadas JG, Belmonte GG (2005) J Electroanal Chem 577:99–105

    Article  CAS  Google Scholar 

  76. Tao YJ, Zhang Z, Xu X, Wang N, Zhou YJ, Cheng HF (2012) Opt Express 20:15121–15125

    Article  CAS  Google Scholar 

  77. Stefan H, Patrik H, Renee K, Ergang W, Mats RA (2011) Org Electron 12:1406–1413

    Article  Google Scholar 

  78. De Paoli MA, Gazotti WA (2002) J Braz Chem Soc 13:441–424

    Article  Google Scholar 

  79. Ak M, Cirpan A, Yılmaz F, Yagcı Y, Toppare L (2005) Eur Polym J 41:967–973

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Department of Science and Technology, Government of India, for financial support. The authors are grateful to Mr. Sangeeth K, CeNSE, Indian Institute of Science (IISc), India, for SEM analysis and Mr. Rajesh Thomas, Department of Instrumentation and Applied Physics, IISc, India, for XPS characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sindhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siju, C.R., Raja, L., Shivaprakash, N.C. et al. Gray to transmissive electrochromic switching based on electropolymerized PEDOT-ionic liquid functionalized graphene films. J Solid State Electrochem 19, 1393–1402 (2015). https://doi.org/10.1007/s10008-015-2756-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2756-4

Keywords

Navigation