Skip to main content

Advertisement

Log in

Microwave-assisted synthesis of functional electrode materials for energy applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Functional electrode materials play an increasingly important role in the advancement of energy conversion and storage technologies used in batteries, electrolyzers, supercapacitors, fuel cells, and other electrochemical devices. To address the problems related to accelerating demand for the so-called renewable energy, which are simultaneously coupled with environmental concerns, new generations of materials, engineering methodologies, and innovative techniques are necessary. Among many synthetic methods, microwave-assisted synthesis becomes nowadays a very popular approach to efficiently control both the composition and morphology of solids. In this review, we focus on its applications to create new advanced energy electrode materials.

A schematic illustration of microwave-assisted synthesis process for making functional electrode materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu YH, Zhang L (2010) Adv Mater 22:E117––E130

    Article  CAS  Google Scholar 

  2. Schlapbach L, Zuttel A (2001) Nature 414:353–358

    Article  CAS  Google Scholar 

  3. Sakintun B, Lamari-Darkrim F, Hirscher M, Hirscher M (2007) Int J Hydrog Energy 32:1121–1140

    Article  CAS  Google Scholar 

  4. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Chem Soc Rev 42:3127–3171

    Article  CAS  Google Scholar 

  5. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk W (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  6. Manthiram A, Murugan AV, Sarkar A, Muraliganth T (2008) Energy Environ Sci 1:621–638

    Article  CAS  Google Scholar 

  7. Sun Y, Xia Y (2002) Science 298:2176–2179

    Article  CAS  Google Scholar 

  8. Rolison DR (2003) Science 299:1698–1701

    Article  CAS  Google Scholar 

  9. Duan X, Niu C, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) Nature 425:274–278

    Article  CAS  Google Scholar 

  10. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  11. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  12. Nazar LF, Goward G, Leroux F, Duncan M, Huang H, Kerr T, Gaubicher J (2001) Int J Inorg Mater 3:191–200

    Article  CAS  Google Scholar 

  13. Hirshes M (2004) Mater Sci Eng B 108:1

    Article  CAS  Google Scholar 

  14. Scrosati B (1995) Nature 373:557–558

    Article  CAS  Google Scholar 

  15. Tarascon J-M, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  16. Wakihara W, Yamamoto O (eds) (1998) Lithium ion batteries-fundamentals and performance. Kodansha-Wiley-VCH, Weinheim

    Google Scholar 

  17. Scrosati B, Abraham KM, van Schalkwijk WA, Hassoun J (eds) (2013) Lithium batteries: advanced technologies and applications, vol. 58. John Wiley & Sons

  18. Huggins RA (1999) In: Besenhard JO (ed) Part III Chapter 4Handbook of battery materials. Wiley-VCH, Weinheim

    Google Scholar 

  19. Winter M, Besenhard JO (1999) Electrochim Acta 45:31–50

    Article  CAS  Google Scholar 

  20. Nazar LF, Crosnier O (2004) In: Nazri G-A, Pistoia G (eds) Kluwer Academic/Plenum, Boston, pp. 112–143

  21. Idota Y, Kabuto T, Matsufuji A, Maekawa Y, Miyasaki T (1997) Science 276:1395–1397

    Article  CAS  Google Scholar 

  22. Smalley RE (2005) MRS Bull 30:412–417

    Article  Google Scholar 

  23. BP, Statistical Review of World Energy (2011) Bp plc technical report

  24. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci U S A 103:15729–15735

    Article  CAS  Google Scholar 

  25. Armaroli N, Balzani V (2007) Angew Chem Int Ed 46:52–66

    Article  CAS  Google Scholar 

  26. Vesborg PCK, Jaramillo TF (2012) RSC Adv 2:7933–7947

    Article  CAS  Google Scholar 

  27. Hernán L, Morales J, Sánchez L, Santos J (1997) Solid State Ionics 104:205–213

    Article  Google Scholar 

  28. Kang S, Goodenough J (2000) J Electrochem Soc 147:3621–3627

    Article  CAS  Google Scholar 

  29. Prabaharan SR, Michael MS, Kumar TP, Mani A, Athinarayanaswami K, Gangadharan R (1995) J Mater Chem 5:1035–1037

    Article  CAS  Google Scholar 

  30. Liu W, Farrington GC, Chaput F, Dunn B (1996) J Electrochem Soc 143:3590–3596

    Article  CAS  Google Scholar 

  31. Zhecheva E, Gorova M, Stoyanova R (1999) J Mater Chem 9:1559–1567

    Article  CAS  Google Scholar 

  32. Hwang K, Um W, Lee H, Song J, Chung K (1998) J Power Sources 74:169–174

    Article  CAS  Google Scholar 

  33. Balaji S, Mutharasu D, Subramanian NS, Ramanathan K (2009) Ionics 15:765–777

    Article  CAS  Google Scholar 

  34. Hayes BL (2002) Microwave synthesis: chemistry at the speed of light. CEM Publishing, Matthews

    Google Scholar 

  35. Bilecka I, Niederberger M (2010) Nanoscale 2:1358–1374

    Article  CAS  Google Scholar 

  36. Kitchen HJ, Vallance SR, Kennedy JL, Tapia-Ruiz N, Carassiti L, Harrison A, Whittaker AG, Drysdale TD, Kingman SW, Gregory DH (2014) Chem Rev 114:1170–1206

    Article  CAS  Google Scholar 

  37. Chandrasekaran S, Ramanathan S, Basak T (2013) Food Res Int 52:243–261

    Article  CAS  Google Scholar 

  38. Abubakar Z, Salema AA, Ani FN (2013) Bioresour Technol 128:578–585

    Article  CAS  Google Scholar 

  39. Motasemi F, Ani FN (2012) Renew Sust Energ Rev 16:4719–4733

    Article  CAS  Google Scholar 

  40. Motasemi F, Afzal MT (2013) Renew Sust Energ Rev 28:317–330

    Article  CAS  Google Scholar 

  41. Mutyala S, Fairbridge C, Pare JRJ, Belanger JMR, Ng S, Hawkins R (2010) Fuel Process Technol 91:127–135

    Article  CAS  Google Scholar 

  42. Shang H, Du W, Liu Z, Zhang H (2013) J Ind Eng Chem 19:1061–1068

    Article  CAS  Google Scholar 

  43. Horikoshi S, Serpone N (eds) (2013) Microwaves in nanoparticle synthesis: fundamentals and applications. John Wiley & Sons, Chicago, pp. 29–30

    Google Scholar 

  44. Kappe CO, Stadler A (2005) In: Mannhold R, Kubinyi H, Folkers G (eds) Microwaves in organic and medicinal chemistry. Wiley-VCH Verlag GmbH, Weinheim, Germany Chapter 1, pp. 4–5

    Chapter  Google Scholar 

  45. Gedye R, Smith F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J (1986) Tetrahedron Lett 27:279–282

    Article  CAS  Google Scholar 

  46. Giguere RJ, Bray TL, Duncan SM, Majetich G (1986) Tetrahedron Lett 27:4945–4948

    Article  CAS  Google Scholar 

  47. Bose AK, Manhas MS, Banik BK, Robb EW (1994) Res Chem Intermed 20:1–11

    Article  CAS  Google Scholar 

  48. Kappe CO (2004) Angew Chem Int Ed 43:6250–6284

    Article  CAS  Google Scholar 

  49. Lee HI, Kim JH, Joo SH, Chang H, Seung D, Joo OS, Suh DJ, Ahn WS, Pak C, Kim JM (2007) Carbon 45:2851–2854

    Article  CAS  Google Scholar 

  50. Zhu JF, Zhu YJ (2006) J Phys Chem B 110:8593–8597

    Article  CAS  Google Scholar 

  51. Wang Y, Iqbal Z, Mitra S (2006) Carbon 44:2804–2808

    Article  CAS  Google Scholar 

  52. An Z, Tang W, Hawker CJ, Stucky GD (2006) J Am Chem Soc 128:15054–15055

    Article  CAS  Google Scholar 

  53. Das S, Mukhopadhyay AK, Datta S, Basu D (2008) Bull Mater Sci 31:943–956

    Article  CAS  Google Scholar 

  54. Faraji S, Ani FN (2014) J Power Sources 263:338–360

    Article  CAS  Google Scholar 

  55. Galema SA, Halstead BSJ, Mingos DMP (1998) Chem Soc Rev 2:213–232

    Google Scholar 

  56. Horikoshi S, Hamamura T, Kajitani M, Yoshizawa-Fujita M, Serpone N (2008) Org Process Res Dev 12:1089–1093

    Article  CAS  Google Scholar 

  57. Gabriel C, Gabriel S, Grant EH, Halsteed BSJ, Mingos DP (1998) Chem Soc Rev 27:213–224

    Article  CAS  Google Scholar 

  58. Mingos DMP, Baghurst DR (1991) Chem Soc Rev 20:1–47

    Article  CAS  Google Scholar 

  59. Park SE, Chang JS, Hwang Y, Kim D, Jhung S, Hwang J (2004) Catal Surv Jpn 8:91–110

    Article  CAS  Google Scholar 

  60. Lidström P, Tierney J, Wathey B, Westman J (2001) Tetrahedron 57:9225–9283

    Article  Google Scholar 

  61. Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Angew Chem Int Ed 50:11312–11359

    Article  CAS  Google Scholar 

  62. Zhu YJ, Chen F (2014) Chem Rev 114:6462–6555

    Article  CAS  Google Scholar 

  63. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  64. Gholam GP, Nazri A (2003) (ed) Lithium batteries: science and technology. Springer

  65. Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) J Phys Chem Lett 1:2193–2203

    Article  CAS  Google Scholar 

  66. Scrosati B, Garche J (2010) J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  67. Armand M, Tarascon JM (2008) Nature 451:652–657

    Article  CAS  Google Scholar 

  68. Kim TH, Park JS, Chang SK, Choi S, Ryu JH, Song HK (2012) Adv Energy Mater 2:860–872

    Article  CAS  Google Scholar 

  69. Goodenough JB, Park KS (2013) J Am Chem Soc 135:1167–1176

    Article  CAS  Google Scholar 

  70. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243–3262

    Article  CAS  Google Scholar 

  71. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  72. Cheng F, Liang J, Tao Z, Chen J (2011) Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  73. Li H, Wang Z, Chen L, Huang X (2009) Adv Mater 21:4593–4607

    Article  CAS  Google Scholar 

  74. Goodenough JB, Kim Y (2009) Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  75. Hu YY, Liu Z, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu X, Wiaderek KM, Du LS, Chapman KW (2013) Nat Mater 12:1130–1136

    Article  CAS  Google Scholar 

  76. Nitta N, Wu F, Lee JT, Yushin G (2015) Mater Today 18:252–264

    Article  CAS  Google Scholar 

  77. Thackeray MM, Wolverton C, Isaacs ED (2012) Energy Environ Sci 5:7854–7863

    Article  CAS  Google Scholar 

  78. Reddy MV, Rao GV, Chowdari BVR (2013) Chem Rev 113:5364–5457

    Article  CAS  Google Scholar 

  79. Zhang J, Zhu Y, Cao C, Butt FK (2015) RSC Adv 5:58568–58573

    Article  CAS  Google Scholar 

  80. Zhu YQ, Guo HZ, Zhai HZ, Cao CB (2015) ACS Appl Mater Interfaces 7:2745–2753

    Article  CAS  Google Scholar 

  81. Martin E, Marone F, Stampanoni M, Wood V (2013) Science 342:716–720

    Article  CAS  Google Scholar 

  82. Lou XW, Li CM, Archer LA (2009) Adv Mater 21:2536–2539

    Article  CAS  Google Scholar 

  83. Wang L, Wang D, Dong Z, Zhang F, Jin J (2013) Nano Lett 13:1711–1716

    Article  CAS  Google Scholar 

  84. Chen G, Wang Z, Xia D (2008) Chem Mater 20:6951–6956

    Article  CAS  Google Scholar 

  85. Paek S-M, Yoo E, Honma I (2009) Nano Lett 9:72–75

    Article  CAS  Google Scholar 

  86. Zhang CF, Peng X, Guo ZP, Cai CB, Chen ZX, Wexler D, Li S, Liu HK (2012) Carbon 50:1897–1903

    Article  CAS  Google Scholar 

  87. Zhang C, Quince M, Chen Z, Guo Z, Liu H (2011) J Solid State Electrochem 15:2645–2652

    Article  CAS  Google Scholar 

  88. Wen ZH, Wang Q, Zhang Q, Li JH (2007) Adv Funct Mater 17:2772–2778

    Article  CAS  Google Scholar 

  89. Wang C, Zhou Y, Ge M, Xu X, Zhang Z, Jiang JZ (2010) J Am Chem Soc 132:46–47

    Article  CAS  Google Scholar 

  90. Wang C, Du G, Ståhl K, Huang H, Zhong Y, Jiang JZ (2012) J Phys Chem C 116:4000–4011

    Article  CAS  Google Scholar 

  91. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  92. Sharma Y, Sharma N, Rao G, Chowdari B (2007) Adv Funct Mater 17:2855–2861

    Article  CAS  Google Scholar 

  93. Long H, Shi T, Jiang S, Xi S, Chen R, Liu S, Liao G, Tang Z (2014) J Mater Chem A 2:3741–3748

    Article  CAS  Google Scholar 

  94. Zhu YQ, Cao CB, Zhang JT, Xu XY (2015) J Mater Chem A 3:9556–9564

    Article  CAS  Google Scholar 

  95. Zhu YQ, Cao CB, Tao S, Chu W, Wu Z, Li Y (2014) Sci Rep 4:5787

    Article  CAS  Google Scholar 

  96. Bai J, Li X, Liu G, Qian Y, Xiong S (2014) Adv Funct Mater 24:3012–3020

    Article  CAS  Google Scholar 

  97. Liu H, Wang J (2013) Electrochim Acta 92:371–375

    Article  CAS  Google Scholar 

  98. Xie Q, Li F, Guo H, Wang L, Chen Y, Yue G, Peng DL (2013) ACS Appl Mater Interfaces 5:5508–5517

    Article  CAS  Google Scholar 

  99. Wang S, Pu J, Tong Y, Cheng Y, Gao Y, Wang Z (2014) J Mater Chem A 2:5434–5440

    Article  CAS  Google Scholar 

  100. Butt FK, Tahir M, Cao C, Idrees F, Ahmed R, Khan WS, Ali Z, Mahmood N, Tanveer M, Mahmood A, Aslam I (2014) ACS Appl Mater Interfaces 6:13635–13641

    Article  CAS  Google Scholar 

  101. Boukhalfa S, Evanoff K, Yushin G (2012) Energy Environ Sci 5:6872–6879

    Article  CAS  Google Scholar 

  102. Zhang C, Yin H, Han M, Dai Z, Pang H, Zheng Y, Lan YQ, Bao J, Zhu J (2014) ACS Nano 8:3761–3770

    Article  CAS  Google Scholar 

  103. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  104. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  105. Largeot C, Portet C, Chmiola J, Taberna P, Gogotsi Y, Simon P (2008) J Am Chem Soc 130:2730–2731

    Article  CAS  Google Scholar 

  106. Kandalkar S, Dhawale D, Kim C, Lokhande C (2010) Synth Met 160:1299–1302

    Article  CAS  Google Scholar 

  107. Kötz R, Carlen M (2000) Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  108. Kötz R, Müller S, Bärtschi M, Schnyder B, Dietrich P, Büchi FN, Tsukada A, Scherer GG, Rodatz P, Garcia O, Barrade P, Hermann V, Gallay R (2001) Electrochem Soc Proc 21:564–575

    Google Scholar 

  109. Cao L, Xu F, Liang YY, Li HL (2004) Adv Mater 16:1853–1857

    Article  CAS  Google Scholar 

  110. Shang C, Dong S, Wang S, Xiao D, Han P, Wang X, Gu L, Cui G (2013) ACS Nano 7:5430–5436

    Article  CAS  Google Scholar 

  111. Yuan CZ, Li JY, Hou LR, Zhang XG, Shen LF, Lou XW (2012) Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

  112. Xiao Y, Lei Y, Zheng B, Gu L, Wang Y, Xiao D (2015) RSC Adv 5:21604–21613

    Article  CAS  Google Scholar 

  113. Tang D, Rettie AJE, Mabayoje O, Wygant BR, Lai Y, Liu Y, Mullins CB (2016) J Mater Chem A 4:3034–3042

    Article  CAS  Google Scholar 

  114. Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen ZB, Deutsch TG, James BD, Baum KN, Baum GN, Ardo S, Wang HL, Miller E, Jaramillo TF (2013) Energy Environ Sci 6:1983–2002

    Article  CAS  Google Scholar 

  115. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  CAS  Google Scholar 

  116. Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Chem Rev 110:6446–6473

    Article  CAS  Google Scholar 

  117. Carroll GM, Zhong DK, Gamelin DR (2015) Energy Environ Sci 8:577–584

    Article  CAS  Google Scholar 

  118. Wang G, Yang Y, Ling Y, Wang H, Lu X, Y-C P, Zhang JZ, Tong Y, Li Y (2016) J Mater Chem A 4:2849–2855

    Article  CAS  Google Scholar 

  119. Zhang Z, Yang X, Hedhili MN, Ahmed E, Shi L, Wang P (2014) ACS Appl Mater Interfaces 6:691–696

    Article  CAS  Google Scholar 

  120. Ghosh S, Kar P, Bhandary N, Basu S, Sardar S, Maiyalagan T, Majumdar D, Bhattacharya SK, Bhaumik A, Lemmensg P, Pal SK (2016) Catal Sci Technol 6:1417–1429

    Article  CAS  Google Scholar 

  121. Zhang W, Chen J, Swiegers GF, Ma ZF, Wallace GG (2010) Nanoscale 2:282–286

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from SFB 749, the cluster of excellence Nanosystems Initiative Munich (NIM), Alexander von Humboldt Foundation through the Federal Ministry for Education and Research (BMBF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliaksandr S. Bandarenka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butt, F.K., Bandarenka, A.S. Microwave-assisted synthesis of functional electrode materials for energy applications. J Solid State Electrochem 20, 2915–2928 (2016). https://doi.org/10.1007/s10008-016-3315-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3315-3

Keywords

Navigation