Skip to main content

Advertisement

Log in

Electrospun porous MnMoO4 nanotubes as high-performance electrodes for asymmetric supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

MnMoO4 nanotubes of diameter about 120 nm were successfully synthesized by a single-spinneret electrospinning technique followed by calcination in air, and their structural, morphological, and electrochemical properties were studied with the aim to fabricate high-performance supercapacitor devices. The obtained MnMoO4 nanotubes display a 1D architecture with a porous structure and hollow interiors. Benefiting from intriguing structural features, the unique MnMoO4 nanotube electrodes exhibit a high specific capacitance, excellent rate capability, and cycling stability. As an example, the tube-like MnMoO4 delivers a specific capacitance of 620 F g−1 at a current density of 1 A g−1, and 460 F g−1 even at a very high current density of 60 A g−1. Remarkably, almost no decay in specific capacitance is found after continuous charge/discharge cycling for 10,000 cycles at 1 A g−1. An asymmetric supercapacitor fabricated from this MnMoO4 nanotubes and activated carbon displayed a maximum high energy density of 31.7 Wh kg−1 and a power density of 797 W kg−1, demonstrating a good prospect for practical applications in energy storage electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xie LJ, Li KX, Sun GH, Hu ZG, Lv CX, Wang JL, Zhang CM (2013) J Soild State Electrochem 17:55–61

    Article  CAS  Google Scholar 

  2. Yu ZY, Chen LF, Yu SH (2014) J Mater Chem A 2:10889–10894

    Article  CAS  Google Scholar 

  3. Pang H, Zhang YZ, Run Z, Lai WY, Huang W (2015) Nano Energy 17:339–347

    Article  CAS  Google Scholar 

  4. Kong LB, Lu C, Liu MC, Luo YC, Kang L (2013) J Soild State Electrochem 17:1463–1471

    Article  CAS  Google Scholar 

  5. Miller JR, Simon P (2008) Science 321:651–653

    Article  CAS  Google Scholar 

  6. Wu HB, Pang H, Lou XW (2013) Energy Environ Sci 6:3619–3626

    Article  CAS  Google Scholar 

  7. Yu XZ, Lu BG, Xu Z (2014) Adv Mater 26:1044–1051

    Article  CAS  Google Scholar 

  8. Huang Y, Liang JJ, Chen YS (2012) Small 8:1805–1834

    Article  CAS  Google Scholar 

  9. Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  10. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  11. Wang J, Liu SK, Zhang X, Liu XS, Liu XX, Li N, Zhao JP, Li Y (2016) Electrochim Acta 213:663–671

    Article  CAS  Google Scholar 

  12. Lu Y, Yan HL, Zhang DY, Qiu KW, Lin J, Xue YM, Li J, Tang CC, Luo YS (2014) J Soild State Electrochem 18:3143–3152

    Article  CAS  Google Scholar 

  13. Cheng JB, Yan HL, Lu Y, Qiu KW, Hou XY, Xu JY, Han L, Liu XM, Kim JK, Luo YS (2015) J Mater Chem A 3:9769–9776

    Article  CAS  Google Scholar 

  14. Javed MS, Zhang CL, Chen L, Xi Y, Hu CG (2016) J Mater Chem A 4:8851–8859

    Article  CAS  Google Scholar 

  15. Yin ZX, Zhang S, Chen YJ, Gao P, Zhu CL, Yang PP, Qi LH (2015) J Mater Chem A 3:739–745

    Article  CAS  Google Scholar 

  16. Wang LQ, Yue LF, Zang X, Zhu HZ, Hao XP, Leng Z, Liu XL, Chen SG (2016) CrystEngComm 18:9286–9291

    Article  CAS  Google Scholar 

  17. Ghosh D, Giri S, Moniruzzaman M, Basu T, Mandal M, Das CK (2014) Dalton Trans 43:11067–11076

    Article  CAS  Google Scholar 

  18. Yesuraj J, Elumalai V, Bhagavathiachari M, Samuel AS, Elaiyappillai E, Johnson PM (2017) J Electroanal Chem 797:78–88

    Article  Google Scholar 

  19. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Nat Commun 2:381–385

    Article  Google Scholar 

  20. Veerasubramani GK, Krishnamoorthy K, Sivaprakasam R, Kim SJ (2014) Mater Chem Physics 147:836–842

    Article  CAS  Google Scholar 

  21. Mu XM, Zhang YX, Wang H, Huang BY, Sun PB, Chen T, Zhou JY, Xie EQ, Zhang ZX (2016) Electrochim Acta 211:217–224

    Article  CAS  Google Scholar 

  22. Shi YF, Guo BK, Corr SA, Shi QH, Hu YS, Heier KR, Chen LQ, Seshadri R, Stucky GD (2009) Nano Lett 9:4215–4220

    Article  CAS  Google Scholar 

  23. Wang Z, Luan D, Madhavi S, Li CM, Lou XW (2011) Chem Commun 47:8061–8063

    Article  CAS  Google Scholar 

  24. Wang HG, Ma DL, Huang Y, Zhang XB (2012) Chem Eur J 18:8987–8993

    Article  CAS  Google Scholar 

  25. Peng T, Hou XY, Liu C, Yu QH, Luo RJ, Yan HL, Lu Y, Liu XM, Luo YS (2017) J Solid State Electrochem 21:1579–1587

    Article  CAS  Google Scholar 

  26. Lu Y, Zhang ZW, Liu XM, Wang WX, Peng T, Guo PF, Sun HB, Yan HL, Luo YS (2016) CrystEngComm 18:7696–7706

    Article  CAS  Google Scholar 

  27. Kanesaka I, Hashiba H, Matsuura I (1988) J Raman Spectrosc 19:213–218

    Article  CAS  Google Scholar 

  28. Cao YJ, Li WY, Xu KB, Zhang YX, Ji T, Zou RJ, Yang JM, Qin ZY, Hu JQ (2014) J Mater Chem A 2:20723–20728

    Article  CAS  Google Scholar 

  29. Wu SS, Chen WF, Yan LF (2014) J Mater Chem A 2:2765–2772

    Article  CAS  Google Scholar 

  30. Xia XF, Lei W, Hao QL, Wang WJ, Wang X (2013) Electrochim Acta 99:253–261

    Article  CAS  Google Scholar 

  31. Zhang XY, Qin JQ, Xue YN, Yu PF, Zhang B, Wang LM, Liu RP (2014) Sci Rep 4:4596–4603

    Article  Google Scholar 

  32. Jayaraman S, Aravindan V, Kumar PS, Ling WC, Ramakrishna S, Madhavi S (2013) Chem Commun 49:6677–6679

    Article  CAS  Google Scholar 

  33. Luo W, Hu XL, Sun YM, Huang YH (2012) J Mater Chem 22:8916–8921

    Article  CAS  Google Scholar 

  34. Wang JN, Yang GR, Lyu W, Yan W (2016) J Alloy Compd 659:138–145

    Article  CAS  Google Scholar 

  35. Lu Y, Liu XM, Qiu KW, Cheng JB, Wang WY, Yan HL, Tang CC, Kim JK, Luo YS (2015) ACS Appl Mater Interfaces 7:9682–9690

    Article  CAS  Google Scholar 

  36. Zhu W, Lu ZY, Zhang GX, Lei XD, Chang Z, Liu JF, Sun XM (2013) J Mater Chem A 1:8327–8331

    Article  CAS  Google Scholar 

  37. Ren B, Fan MQ, Liu Q, Wang J, Song DL, Bai XF (2013) Electrochim Acta 92:197–204

    Article  CAS  Google Scholar 

  38. Zhang G, Yu L, Wu HB, Hoster HE, Lou XW (2012) Adv Mater 24:4609–4613

    Article  CAS  Google Scholar 

  39. Chen YP, Liu BR, Liu Q, Wang J, Li ZS, Jing XY, Liu LH (2015) Nanoscale 7:15159–15167

    Article  CAS  Google Scholar 

  40. Yang B, Yu L, Yan HJ, Sun YB, Liu Q, Liu JY, Song DL, Hu SX, Yuan Y, Liu LH, Wang J (2015) J Mater Chem A 3:13308–13316

    Article  CAS  Google Scholar 

  41. Zheng Y, Yang YB, Chen SS, Yuan Q (2016) CrystEngComm 18:4218–4235

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Nos. 51502257, 61574122, and 21373107), the Innovative Research Team (in Science and Technology) in University of Henan Province (No. 13IRTSTHN018), and the Nanhu Scholars Program for Young Scholars of XYNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsong Luo.

Electronic supplementary material

ESM 1

(DOCX 9416 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Zhao, M., Luo, R. et al. Electrospun porous MnMoO4 nanotubes as high-performance electrodes for asymmetric supercapacitors. J Solid State Electrochem 22, 657–666 (2018). https://doi.org/10.1007/s10008-017-3781-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3781-2

Keywords

Navigation