Skip to main content
Log in

Lithium-sulphur batteries based on biological 3D structures

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Lithium-sulphur accumulators are, thanks to their high theoretical energy density and good availability of sulphur, one of the most promising concepts of the new generation of accumulators. In this paper, we present a 3D structured cathode formed on a natural basis. A sea sponge Spongia officinalis served as a template for the electrode structure. This 3D electrode provides enough space for sulphur. Thus, it allows high sulphur loading. This electrode structure also immobilizes polysulphides inside the cathode and improves stability during cycling. The resultant new cathode configuration allows reaching very high sulphur area loading of 4.9 mg/cm2 which is almost four times more than in the case of a standard coated electrode. Despite the high sulphur loading, the electrode maintains high stability during cycling in comparison with a standard electrode and it also reaches much higher square capacity, exceeding 3.0 mAh/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Manthiram A, Fu Y, Chung S, Zu C, Su Y (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787

    Article  CAS  Google Scholar 

  2. J. Kim, D. Lee, H. Jung, Y. Sun, J. Hassoun, B. Scrosati, An advanced lithium-sulfur battery, Adv Funct Materials. vol. 23 (2013) 1076–1080.

  3. Yoo H, Markevich E, Salitra G, Sharon D, Aurbach D (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17:110–121

    Article  CAS  Google Scholar 

  4. Brodd R (2013) Batteries for sustainability: selected entries from the Encyclopedia of Sustainability Science and Technology. Springer-Verlag New York, New York

    Book  Google Scholar 

  5. Fedorková A, Nacher-Alejos A, Gómez-Romero P, Oriňáková R, Kaniansky D (2010) Structural and electrochemical studies of PPy/PEG-LiFePO4 cathode material for Li-ion batteries. Electrochim Acta 55:943–947

    Article  Google Scholar 

  6. Nitta N, Wu F, Lee J, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18:252–264

    Article  CAS  Google Scholar 

  7. Fedorková A, Oriňáková R, Čech O, Sedlaříková M (2013) New composite cathode materials for Li/S batteries: a review. Int J Electrochem Sci 8

  8. Assary R, Curtiss L, Moore J (2014) Toward a molecular understanding of energetics in Li–S batteries using nonaqueous electrolytes: a high-level quantum chemical study. J Phys Chem 118:11545–11558

    CAS  Google Scholar 

  9. Y. Yin, S. Xin, Y. Guo, L. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angewandte Chemie. 50 (203) 13186–13200

  10. Choi Y, Kim K, Ahn H, Ahn J (2008) Improvement of cycle property of sulfur electrode for lithium/sulfur battery. J Alloys Compd 449:313–316

    Article  CAS  Google Scholar 

  11. Cao Z, Ma C, Jia Y, Sun Z, Yue H, Yin Y, Yang S (2015) Activated clay of nest structure encapsulated sulfur cathodes for lithium–sulfur batteries. RSC Adv 36:28349–28353

    Article  Google Scholar 

  12. Manthiram A, Fu Y, Su Y (2013) Challenges and prospects of lithium–sulfur batteries. Accounts Chem Res 46:1125–1134

    Article  CAS  Google Scholar 

  13. Evers S, Nazar L (2013) New approaches for high energy density lithium–sulfur battery cathodes. Accounts Chem Res 46:1135–1143

    Article  CAS  Google Scholar 

  14. Yamin H, Peled E (1983) Electrochemistry of a nonaqueous lithium/sulfur cell. J Power Sources 9:281–287

    Article  CAS  Google Scholar 

  15. Zhao X, Tu J, Lu Y, Cai J, Zhang Y, Wang X, Gu C (2013) Graphene-coated mesoporous carbon/sulfur cathode with enhanced cycling stability. Electrochim Acta 113:256–262

    Article  CAS  Google Scholar 

  16. Wang X, Zhang Z, Yan X, Qu Y, Lai Y, Li J (2015) Interface polymerization synthesis of conductive polymer/graphite oxide@sulfur composites for high-rate lithium-sulfur batteries. Electrochim Acta 155:54–60

    Article  CAS  Google Scholar 

  17. Xiao L, Cao Y, Xiao J, Schwenzer B, Engelhard M, Saraf L, Nie Z, Exarhos G, Liu J (2012) A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24:1176–1181

    Article  CAS  Google Scholar 

  18. Wu F, Chen J, Chen R, Wu S, Li L, Chen S, Zhao T (2011) Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries. J Phys Chem C 115:6057–6063

    Article  CAS  Google Scholar 

  19. Cheng H, Wang S (2014) Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium–sulphur batteries. J Mater Chem A 2:13783

    Article  CAS  Google Scholar 

  20. Babu G, Ababtain K, Ng K, Arava L (2015) Electrocatalysis of lithium polysulfides: current collectors as electrodes in Li/S battery configuration. Scientific Reports 5:8763

    Article  CAS  Google Scholar 

  21. He J, Chen Y, Li P, Fu F, Wang Z, Zhang W (2015) Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries. J Mater Chem A 3:18605–18610

    Article  CAS  Google Scholar 

  22. Zhou G, Paek E, Hwang G, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760–7771

    Article  CAS  Google Scholar 

  23. Yao H, Yan K, Li W, Zheng G, Kong D, Seh Z, Narasimhan V, Liang Z, Cui Y (2014) Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ Sci 7:3381–3390

    Article  CAS  Google Scholar 

  24. Li Y, Fan J, Zheng M, Dong Q (2016, 2016) A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy Environ Sci:1998–2004

  25. Chen J, Yuan R, Feng J, Zhang Q, Huang J, Fu G, Zheng M, Ren B, Dong Q (2015, 2015) Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li–S battery. Chem Mater:2048–2055

  26. Mi L, Xiao W, Cui S, Hou H, Chen W (2016, 2016) An N-doped three dimensional flexible carbon/sulfur cathode for lithium sulfur battery design. Dalton Trans:3305–3309

  27. See K, Jun Y, Gerbec J, Sprafke J, Wudl F, Stucky G, Seshadri R (2014) Sulfur-functionalized mesoporous carbons as sulfur hosts in Li–S batteries: increasing the affinity of polysulfide intermediates to enhance performance. Appl Mater Interfaces 6:10908–10916

    Article  CAS  Google Scholar 

  28. Rao M, Li W, Cairns E (2012) Porous carbon-sulfur composite cathode for lithium/sulfur cells. Electrochem Commun 17:1–5

    Article  CAS  Google Scholar 

  29. Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett 11:4288–4294

    Article  CAS  Google Scholar 

  30. Ryu H, Guo Z, Ahn H, Cho G, Liu H (2009) Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery. J Power Sources 189:1179–1183

    Article  CAS  Google Scholar 

  31. Yan J, Liu X, Yao M, Wang X, Wafle T, Li B (2015) Long-life, high-efficiency lithium–sulfur battery from a nanoassembled cathode. Chem Mater 27:5080–5087

    Article  CAS  Google Scholar 

  32. Zhang Z, Zhang Z, Wang X, Li J, Lai Y (2014) Enhanced electrochemical performance of sulfur cathode by incorporation of a thin conductive adhesion layer between the current collector and the active material layer. J Appl Electrochem 44:607–611

    Article  CAS  Google Scholar 

  33. Ahn W, Seo M, Jun Y, Lee D, Hassan F, Wang X, Yu A, Chen Z (2016) Sulfur nanogranular film-coated three-dimensional graphene sponge-based high power lithium sulfur battery. ACS Appl Mater Interfaces 8:1984–1991

    Article  CAS  Google Scholar 

  34. Walle M, Zhang Z, You X, Zhang M, Chabu J, Li Y, Liu Y (2016) Soft approach hydrothermal synthesis of a 3D sulfur/graphene/multiwalled carbon nanotube cathode for lithium–sulfur batteries. RSC Adv 6:78994–78998

    Article  CAS  Google Scholar 

  35. Pang Q, Nazar L (2016) Long-life and high-areal-capacity Li–S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10:4111–4118

    Article  CAS  Google Scholar 

  36. Liang X, Rangom Y, Kwok C, Pang Q, Nazar L (2017) Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv Mater 29:1603040

    Article  Google Scholar 

Download references

Acknowledgements

This research has been carried out in the Centre for Research and Utilization of Renewable Energy (CVVOZE).

Funding

The authors gratefully acknowledge the financial support from the Ministry of Education, Youth and Sports of the Czech Republic under NPU I programme (project no. LO1210).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kazda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazda, T., Čudek, P., Vondrák, J. et al. Lithium-sulphur batteries based on biological 3D structures. J Solid State Electrochem 22, 537–546 (2018). https://doi.org/10.1007/s10008-017-3791-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3791-0

Keywords

Navigation