Skip to main content
Log in

A nickel nanoparticle/carbon nanotube-modified carbon fiber microelectrode for sensitive insulin detection

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A nickel nanoparticle (NiNP)/carbon nanotube (CNT)-modified carbon fiber microelectrode (NiNPs/CNTs/CFME) was fabricated using a two-step electroless plating/chemical vapor deposition method. The morphology of the NiNPs/CNTs composite structure was characterized by scanning electron microscopy, and its elemental composition was characterized by an energy dispersive spectrometer. The electrochemical behavior of the NiNPs/CNTs/CFME in aqueous alkaline solutions of insulin was investigated by cyclic voltammetry (CV), chronoamperometry, and electrochemical impedance spectroscopy in sequence. CV curves show that the NiNPs/CNTs/CFME displays a high oxidation peak current, a fast electron transfer rate, and good electrocatalytic activity towards insulin, compared to a bare CFME and a pure NiNP-modified CFME. In the chronoamperometry tests, the NiNPs/CNTs/CFME demonstrates an excellent analytical performance in detecting low concentrations of insulin, including good sensitivity (1.11 nA μM−1) and a low detection limit (270 nM). Moreover, this microelectrode exhibits great reproducibility in successive potential cycling and satisfactory long-term stability after storage at room temperature for approximately 8 weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tse G, Lai ETH, Tse V, Jie MY (2016) J Diabetes Res 2016:1–8

  2. Lee CH, Lam KSL (2016) J Diabetes Invest 2:131–133

    Google Scholar 

  3. Mo R, Jiang T, Di J, Tai W, Gu Z (2014) Chem Soc Rev 43:3595–3629

    Article  CAS  Google Scholar 

  4. Öberg J, Bröjer J, Wattle O, Lilliehöök I (2012) Comp Clin Pathol 21:1291–1300

    Article  Google Scholar 

  5. Warnken T, Huber K, Feige K (2016) BMC Vet Res 12:1–10

    Article  Google Scholar 

  6. Wyatt R, Williams AJ (2016) Methods Mol Biol 1433:57

    Article  CAS  Google Scholar 

  7. Manoharan C, Singh J (2015) Polymers 7:836–850

    Article  CAS  Google Scholar 

  8. Salimi A, Hallaj R (2012) J Solid State Electrochem 16:1239

    Article  CAS  Google Scholar 

  9. Hovancová J, Šišoláková I, Oriňaková R, Oriňak A (2017) J Solid State Electrochem 21:2147

    Article  Google Scholar 

  10. Forster R (2014) Springer New York pp 1248–1256

  11. Wang L, Tang Y, Wang L, Zhu H, Meng X, Chen Y et al (2015) J Solid State Electrochem 19:851

    Article  CAS  Google Scholar 

  12. Soomro RA, Ibupoto ZH, Sirajuddin AMI, Willander M (2015) J Solid State Electrochem 19:913

    Article  CAS  Google Scholar 

  13. Wolfart F, Maciel A, Nagata N, Vidotti M (2013) J Solid State Electrochem 17:1333

    Article  CAS  Google Scholar 

  14. Yu Y, Guo M, Yuan M, Liu W, Hu J (2016) Biosens Bioelectron 77:215–219

    Article  CAS  Google Scholar 

  15. Miao Y, Ouyang L, Zhou S, Xu L, Yang Z, Xiao M, Ouyang R (2014) Biosens Bioelectron 53:428–439

    Article  CAS  Google Scholar 

  16. El-Refaei SM, Saleh MM, Awad MI (2014) J Solid State Electrochem 18:5

    Article  CAS  Google Scholar 

  17. Ghoreishi SM, Behpour M, Hajisadeghian E, Golestaneh M (2016) Arab J Chem 9:1563–1568

    Article  Google Scholar 

  18. Xiang L, Yu P, Zhang M, Hao J, Wang Y, Zhu L, Dai L, Mao L (2014) Anal Chem 86:5017–5023

    Article  CAS  Google Scholar 

  19. Lu L, Liang L, Teh KS, Xie Y, Wan Z, Tang Y (2017) Sensors 17:725

    Article  Google Scholar 

  20. Chekin F, Bagheri S, Arof AK, Hamid SBA (2012) J Solid State Electrochem 16:3245

    Article  CAS  Google Scholar 

  21. Arvinte A, Westermann AC, Sesay AM, Virtanen V (2010) Sensors Actuators B Chem 150:756–763

    Article  CAS  Google Scholar 

  22. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) J Solid State Electrochem 13:1171

    Article  CAS  Google Scholar 

  23. Yi W, Yang D, Chen H, Liu P, Tan J, Li H (2014) J Solid State Electrochem 18:899

    Article  CAS  Google Scholar 

  24. Sengupta J, Jacob C (2010) J Nanopart Res 12:457–465

    Article  CAS  Google Scholar 

  25. Rafiee B, Fakhari AR (2013) Biosens Bioelectron 46:130

    Article  CAS  Google Scholar 

  26. Tzeng SS, Chang FY (2001) Mater Sci Eng A 302:258–267

    Article  Google Scholar 

  27. Golikand AN, Asgari M, Maragheh MG, Shahrokhian S (2006) J Electroanal Chem 588:155–160

    Article  CAS  Google Scholar 

  28. Pissinis DE, Sereno LE, Marioli JM (2012) Open J Phys Chem 2:23–33

    Article  CAS  Google Scholar 

  29. Pissinis DE, Sereno LE, Marioli JM (2014) Sensors Actuators B Chem 193:46–52

    Article  CAS  Google Scholar 

  30. Salimi A, Roushani M, Soltanian S, Hallaj R (2007) Anal Chem 79:7431–7438

    Article  CAS  Google Scholar 

  31. Asgari M, Maragheh MG, Davarkhah R, Lohrasbi E (2011) J Electrochem Soc 158:225

    Article  Google Scholar 

  32. Tian H, Jia M, Zhang M, Hu J (2013) Electrochim Acta 96:285–290

    Article  CAS  Google Scholar 

  33. Salimi A, Pourbeyram S, Haddadzadeh H (2003) J Electroanal Chem 542:39–49

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (1980) J Chem Educ 60:669–676

    Google Scholar 

  35. Niu X, Lan M, Zhao H, Chen C (2013) Anal Chem 85:3561

    Article  CAS  Google Scholar 

  36. Inczedy J, Lengyel T, Ure AM, Gelencser A, Hulanicki A (1998) Compendium of analytical nomenclature, definitive rules, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  37. Kennedy RT, Huang L, Atkinson MA, Dush P (1993) Anal Chem 65:1882–1887

    Article  CAS  Google Scholar 

  38. Gorski W, Aspinwall CA, Lakey JRT, Kennedy RT (1997) J Electroanal Chem 425:191–199

    Article  CAS  Google Scholar 

  39. Wang J, Zhang X (2001) Anal Chem 73:844–847

    Article  CAS  Google Scholar 

  40. Snider RM, Ciobanu M, Rue AE, Cliffel DE (2008) Anal Chim Acta 609:44

    Article  CAS  Google Scholar 

  41. Salimi A, Noorbakhash A, Sharifi E, Semnani A (2008) Biosens Bioelectron 24:798

    Article  Google Scholar 

  42. Zhang L, Chu X, Yuan S, Zhao G (2015) RSC Adv 5:41317–41323

    Article  CAS  Google Scholar 

  43. Lin Y, Hu L, Li L, Wang K (2014) RSC Adv 4:46208–46213

    Article  CAS  Google Scholar 

  44. Maritan A, Toigo F (1990) Electrochim Acta 35:141–145

    Article  CAS  Google Scholar 

  45. Sattarahmady N, Heli H, Faramarzi F (2010) Talanta 82:1126–1135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present research was supported by the National Natural Science Foundation of China (Nos. 51375175), the Natural Science Foundation of Guangdong Province, China (Nos. 2015A030313201 and 2014A030312017), and the Science and Technology Planning Project of Guangdong Province, China (No. 2015A010105007). The authors also thank to the Pearl River S&T Nova Program of Guangzhou.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longsheng Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Liang, L., Xie, Y. et al. A nickel nanoparticle/carbon nanotube-modified carbon fiber microelectrode for sensitive insulin detection. J Solid State Electrochem 22, 825–833 (2018). https://doi.org/10.1007/s10008-017-3816-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3816-8

Keywords

Navigation