Skip to main content

Advertisement

Log in

Self-assembled ultrathin carbon black/carbon nanotube films as electrodes for microsupercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The ability to control the morphology of composite thin films is essential to construct networks exhibiting the desired final properties. In this work, we report that the vortex-assisted assembly of dispersions containing carbon black and carbon nanotubes could generate structures with varying densities and electrical properties. The controlled aggregation of carbon black nanoparticles led to the formation of a porous framework, with the nanotubes percolating through the entire film. The use of dispersions containing 20 wt% of carbon nanotubes led to thin films with thickness of 129 nm and an electronic conductivity of 2.0 S cm−1. This composite displayed good performance as electrode for micro in-plane supercapacitors (thickness also of 129 nm) with ionic liquid electrolyte, exhibiting capacitances as high as 41.0 F g−1, and a power density of 7.6 Wh kg−1 at 4 A g−1. Besides proposing a new route to produce thin-film electrodes for energy storage applications, we also demonstrate that dispersion composition can be successfully used to regulate the interactions in aggregating systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu S, Sheng J, Ni J, Li Y (2021) 3D vertical arrays of nanomaterials for microscaled energy storage devices. Acc Mater Res 2(12):1215–1226. https://doi.org/10.1021/accountsmr.1c00175

    Article  CAS  Google Scholar 

  2. Wang M, Zhang J, Wang Y, Lu Y (2022) Material and structural design of microsupercapacitors. J Solid State Electrochem 26(2):313–334. https://doi.org/10.1007/s10008-021-05057-y

    Article  CAS  Google Scholar 

  3. Zhu S, Li Y, Zhu H, Ni J, Li Y (2019) Pencil-drawing skin-mountable micro-supercapacitors. Small 15(3). https://doi.org/10.1002/smll.201804037

  4. Qi D, Liu Y, Liu Z, Zhang L, Chen X (2017) Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater 29(5). https://doi.org/10.1002/adma.201602802

  5. Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, Conway M, Reddy ALM, Yu J, Vajtai R, Ajayan PM (2011) Ultrathin planar graphene supercapacitors. Nano Lett 11(4):1423–1427. https://doi.org/10.1021/nl200225J

    Article  CAS  PubMed  Google Scholar 

  6. Zhu S, Ni J, Li Y (2020) Carbon nanotube-based electrodes for flexible supercapacitors. Nano Res 13(7):1825–1841. https://doi.org/10.1007/s12274-020-2729-5

    Article  CAS  Google Scholar 

  7. Rodrigues M-TF, Ajayan PM, Silva GG (2013) Fast vortex-assisted self-assembly of carbon nanoparticles on an air-water interface. J Phys Chem B 117(21):6524–6533. https://doi.org/10.1021/jp4014114

    Article  CAS  PubMed  Google Scholar 

  8. Sohn B, Choi J, Yoo S, Yun S, Zin W, Jung J, Kanehara M, Hirata T, Teranishi T (2003) Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles. J Am Chem Soc 125(21):6368–6369. https://doi.org/10.1021/ja035069w

    Article  CAS  PubMed  Google Scholar 

  9. Park S, Lim J, Chung S, Mirkin C (2004) Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303(5656):348–351. https://doi.org/10.1126/science.1093276

    Article  CAS  PubMed  Google Scholar 

  10. Salavagione HJ, Martínez G, Marco CA (2012) Polymer/solvent synergetic effect to improve the solubility of modified multi-walled carbon nanotubes. J Mater Chem 22(14):7020–7027. https://doi.org/10.1039/C2JM16113C

    Article  CAS  Google Scholar 

  11. Detriche S, Nagy JB, Mekhalif Z, Delhalle J (2009) Surface state of carbon nanotubes and hansen solubility parameters. J Nanosci Nanotechnol 9(10):6015–6025. https://doi.org/10.1166/jnn.2009.1568

    Article  CAS  PubMed  Google Scholar 

  12. Hansen C (2007) Hansen solubility parameters: a user’s handbook. CRC Press

    Book  Google Scholar 

  13. Clark MD, Krishnamoorti R (2009) Dispersion of functionalized multiwalled carbon nanotubes. J Phys Chem C 113(49):20861–20868. https://doi.org/10.1021/jp907221g

    Article  CAS  Google Scholar 

  14. Abbott S, Hansen C (2008) Hansen solubility parameters in practice. Hansen-Solubility.com

  15. Bergin SD, Sun Z, Rickard D, Streich PV, Hamilton JP, Coleman JN (2009) Multicomponent solubility parameters for single-walled carbon nanotube-solvent mixtures. ACS Nano 3(8):2340–2350. https://doi.org/10.1021/nn900493u

    Article  CAS  PubMed  Google Scholar 

  16. Girotto EM, Santos IA (2002) Medidas de Resistividade Elétrica DC Em Sólidos: Como Efetuá-Las Corretamente. Quim Nova, pp 639–647

  17. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51(26):5567–5580. https://doi.org/10.1016/j.electacta.2006.03.016

    Article  CAS  Google Scholar 

  18. Zhang S, Lu X, Zhou Q, Li X, Zhang X, Li S (2009) Ionic liquids: physicochemical properties. Amsterdam

  19. Wei D, Ng TW (2009) Application of novel room temperature ionic liquids in flexible supercapacitors. Electrochem Commun 11(10):1996–1999. https://doi.org/10.1016/j.elecom.2009.08.037

    Article  CAS  Google Scholar 

  20. Trigueiro JPC, Lavall RL, Silva GG (2014) Supercapacitors based on modified graphene electrodes with poly(ionic liquid). J Power Sources 256:264–273. https://doi.org/10.1016/j.jpowsour.2014.01.083

    Article  CAS  Google Scholar 

  21. Borges RS, Reddy ALM, Rodrigues M-TF, Gullapalli H, Balakrishnan K, Silva GG, Ajayan PM (2013) Supercapacitor operating at 200 degrees celsius. Sci Rep 3. https://doi.org/10.1038/srep02572

  22. Borges RS, Ribeiro H, Lavall RL, Silva GG (2012) Temperature stable supercapacitors based on ionic liquid and mixed functionalized carbon nanomaterials. J Solid State Electrochem 16(11):3573–3580. https://doi.org/10.1007/s10008-012-1785-5

    Article  CAS  Google Scholar 

  23. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950. https://doi.org/10.1016/S0008-6223(00)00183-4

    Article  CAS  Google Scholar 

  24. Lavall RL Estrutura e Propriedades de Materiais Eletrólitos e Compósitos Poliméricos e Sua Aplicação Em Capacitores Eletroquímicos de Dupla Camada.

  25. Campos Trigueiro JP, Silva GG, Pereira FV, Lavall RL (2014) Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals. J Colloid Interface Sci 432:214–220. https://doi.org/10.1016/j.jcis.2014.07.001

    Article  CAS  Google Scholar 

  26. da Silva WM, Ribeiro H, Neves JC, Rezende Calado HD, Garcia FG, Silva GG (2014) Multi-walled carbon nanotubes functionalized with triethylenetetramine as fillers to enhance epoxy dimensional thermal stability. J Therm Anal Calorim 115(2):1021–1027. https://doi.org/10.1007/s10973-013-3519-z

    Article  CAS  Google Scholar 

  27. Roldán S, Barreda D, Granda M, Menéndez R, Santamaría R, Blanco C (2015) An approach to classification and capacitance expressions in electrochemical capacitors technology. Phys Chem Chem Phys 17(2):1084–1092. https://doi.org/10.1039/C4CP05124F

    Article  CAS  PubMed  Google Scholar 

  28. Wang D, Wang X (2011) Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device. Langmuir 27(5):2007–2013. https://doi.org/10.1021/la1044128

    Article  CAS  PubMed  Google Scholar 

  29. Byon HR, Lee SW, Chen S, Hammond PT, Shao-Horn Y (2011) Thin films of carbon nanotubes and chemically reduced graphenes for electrochemical micro-capacitors. Carbon 49(2):457–467. https://doi.org/10.1016/j.carbon.2010.09.042

    Article  CAS  Google Scholar 

  30. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  PubMed  Google Scholar 

  31. Ma W, Chen S, Yang S, Zhu M (2016) Hierarchically porous carbon black/graphene hybrid fibers for high performance flexible supercapacitors. RSC Adv 6(55):50112–50118. https://doi.org/10.1039/c6ra08799j

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CNPq/Brazil for financial support. The authors also would like to thank the Centro de Microscopia/UFMG for the provided images. L.S.d.O. is grateful to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for the scholarships. R.L.L. is recipient of fellowships from CNPq (grant number 315179/2020-1). J.P.C.T. and R.L.L. are members of the Rede Mineira de Química (RQ-MG), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco-Tulio F. Rodrigues or João Paulo C. Trigueiro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material

Supplementary file1 (DOCX 618 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, MT.F., de Oliveira, L.S., Lavall, R.L. et al. Self-assembled ultrathin carbon black/carbon nanotube films as electrodes for microsupercapacitors. J Solid State Electrochem 27, 2561–2569 (2023). https://doi.org/10.1007/s10008-023-05551-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05551-5

Keywords

Navigation