Skip to main content
Log in

Simulation of Critical Loads for Nitrogen for Terrestrial Plant Communities in The Netherlands

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

This paper describes a new method to derive nitrogen critical loads for vegetation, and its application to The Netherlands. An ‘inverted’ form of the soil chemical model SMART2 was used to estimate atmospheric nitrogen deposition at the critical conditions for 139 terrestrial vegetation types (associations) occurring in northwestern Europe, using an iterative search procedure. The critical conditions are the lower end of the pH range, and the upper end of the nitrogen availability range for each vegetation type. The critical load is assumed to be the nitrogen deposition that results in the critical conditions. The critical load values were subjected to a sensitivity and uncertainty analysis. Sensitivity analysis showed that the estimated critical N load mainly depends on the vegetation type and to a lesser extent on the soil type and the critical N availability. Of these variables N availability, which was estimated from Ellenberg’s indicator scale, contributes most to the uncertainty. The critical load averaged over all vegetation types and soil types is estimated to be 23 ± 7 kg N ha−1y−1. This is a rather reliable value because its uncertainty is small and it is in agreement with empirical estimates of critical loads. Critical loads per vegetation type are less reliable because they are not correlated to empirical values, although the ranges of simulated and empirical values usually overlap. At the site level, uncertainty becomes very large and it is not possible to determine critical loads with any practical significance. The uncertainties can only be reduced if more data become available on the abiotic response per species under field conditions, at least to nitrogen availability and soil pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Achermann B, Bobbink R. 2003. Empirical critical loads for nitrogen: expert workshop Berne 11−13 November 2002. Swiss Agency for the Environment, Forests and Landscape, Environmental Documentation Vol. 164. p 327

  • Albers R, Beck J, Bleeker A, van Bree L, van Dam J, van der Eerden L, Freijer J, van Hinsberg A, Marra M, van der Salm C, Tonneijck A, de Vries W, Wesselink L, Wortelboer F. 2001. Evaluatie van de verzuringsdoelstellingen: de onderbouwing. Report RIVM 725501001. p 200

  • Anonymous. 2002. Milieubalans 2002: het Nederlandse milieu verkend. Report RIVM. p 170

  • Bal D, Beije HM, Hoogeveen YR, Jansen J, van der Reest PJ. 1995. Handboek Natuurdoeltypen in Nederland. Report IKC-N 11. p 408

  • Bobbink R, Hornung M, Roelofs JGM. 1998. The effect of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:738

    Article  Google Scholar 

  • Bobbink R, Ashmore M, Braun S, Flückiger W, van den Wyngaert IJJ. 2003. Empirical nitrogen critical loads for natural and semi-natural ecosystems: 2002 update. Achermann B, Bobbink R, editors. Empirical critical loads for nitrogen: expert workshop Berne 11-13 november 2002. Swiss Agency for the Environment, Forests and Landscape, Environmental Documentation 164:43–170

    Google Scholar 

  • Braun-Blanquet J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde. 3. Aufl. Wien/ Berlin Heidelberg New York: Springer. p 865

  • Davies CE, Moss D. 2002. EUNIS Habitat Classification. 2001 Work Programme, Final Report to the European Environment Agency European Topic Centre on Nature Protection and Biodiversity. Centre for Ecology and Hydrology

  • de Vries W, van Dobben H, van Herk CM, Roelofs J, van Pul A, van Hinsberg A, Duijzer J, Erisman JW. 2002. Effecten emissiebeleid voor verzuring op de natuur. ArenA 8(2002):105–8

    Google Scholar 

  • Düll R. 1991. Zeigerwerte von Laub- und Lebermoose. Scripta Geobotanica 18:175–214

    Google Scholar 

  • Eerens HC, van Dam JD, Eds. 2000. Grootschalige luchtverontreiniging en depositie in de nationale milieuverkenning. RIVM report 408129016

  • Ellenberg H. 1991. Zeigerwerte der Gefäszpflanzen (onhe Rubus). Scripta Geobotanica 18:9–166

    Google Scholar 

  • Goedhart PW, Thissen JTNM. 2002. Biometris Genstat procedure library manual: 6th ed. Wageningen: Biometris. p 102

    Google Scholar 

  • Iman RL, Conover WJ. 1982. A distribution-free approach to inducing rank correlation among input variables. Commun Stat Simul Comput 11:311–34

    Google Scholar 

  • Jansen MJW, Schouwenberg EPAG, Mol-Dijkstra JP, Kros, J, Houweling, H. 2000. Variance-based regression-free uncertainty analysis for groups of inputs applied to a model chain in nature conservation. Cottam MP, Harvey DW, Pape RP, Tait J, Eds. Foresight and Precation; Proceedings of ESREL 2000 and SRA-Europe Annual Conference, Edinburgh, May 15–17 2000. Rotterdam: Balkema. p 1127–31

  • Jansen MJW, Thissen JTNM, Withagen JCM. 2003. USAGE: uncertainty and sensitivity analysis in a Genstat environment. Wageningen: Biometris. 30 p

    Google Scholar 

  • Kros, J. 2002. Evaluation of biogeochemical models at local and regional scale. Thesis, Wageningen: Alterra scientific contributions 7

  • McKay MD, Beckman RJ, Conover WJ. 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21:239–45

    Google Scholar 

  • Nilsson J, Grennfelt P. 1988. Critical loads for sulphur and nitrogen. Miljørapport 15:1–418. Nordic Councel of Ministers, Copenhagen

    Google Scholar 

  • Posch M, Hettelingh J-P, de Smet PAM. 2001. Characterisation of critical load exceedances in Europe. Water Air Soil Pollut 130:1139–1144

    Article  Google Scholar 

  • Price WL. 1979. A controlled random search procedure for global optimization. Comput J 20:367–70

    Google Scholar 

  • Runhaar J, Alkemade JRM, Hennekens SM, Wiertz J, van’t Zelfde M. 2002. Afstemming biotische responsmodules DEMNAT-SMART/MOVE. Rapport RIVM 408657008

  • Saltelli A, Chan KPS, Scott EM. 2000. Sensitivity analysis. New York: Wiley. p 475

    Google Scholar 

  • Schaffers AP, Sykora KV. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field methods. J Veg Sc 11:225–44

    Google Scholar 

  • Schaminée JHJ, Stortelder AFH, Weeda EJ. 1996. De vegetatie van Nederland 3: plantengemeenschappen van graslanden, zomen en droge heiden. Uppsala/Leiden: Opulus Press. p 356

    Google Scholar 

  • Schaminée JHJ, Stortelder AHF, Westhoff V. 1995a. De vegetatie van Nederland 1. inleiding tot de plantensociologie: grondslagen, methoden en toepassingen. Uppsala: Opulus Press. p 296

    Google Scholar 

  • Schaminée JHJ, Weeda EJ, Westhoff V. 1995b. De vegetatie van Nederland 2: plantengemeenschappen van wateren, moerassen en natte heiden. Uppsala/Leiden: Opulus Press. p 360

    Google Scholar 

  • Schaminée JHJ, Weeda EJ, Westhoff V. 1998. De vegetatie van Nederland 4: plantengemeenschappen van de kust en van binnenlandse pioniermilieus. Uppsala/Leiden: Opulus Press. p 346

    Google Scholar 

  • Schouwenberg EPAG, Houweling H, Jansen MJW, Kros J, Mol-Dijkstra JP. 2000. Uncertainty propagation in model chains: a case study in nature conservancy. Report Alterra 001, 90 p

  • Siebel, HN. 1993. Indicatiegetallen van blad- en levermossen. Report IBN 47, 45 p + flop

  • Steur GGL, Heijink W. 1991. Bodemkaart van Nederland schaal 1:50 000. Algemene begrippen en indelingen, 4e uitgave. Wageningen: DLO-Winand Staring Centre, Rapport 168

  • Stortelder AHF, Schaminée JHJ, Hommel PWFM. 1999. De vegetatie van Nederland 5: plantengemeenschappen van ruigten, struwelen en bossen. Uppsala / Leiden: Opulus Press. p 376

    Google Scholar 

  • Sverdrup H, de Vries W. 1994. Calculating critical loads for acidity with a mass balance model. Water Air Soil Pollut 72:143–62

    Article  CAS  Google Scholar 

  • van Dam D, van Dobben HF, ter Braak CJF, de Wit T. 1986. p Airollution as a possible cause for the decline of some phanerogamic species in The Netherlands. Vegetation 65:47–52

    Article  Google Scholar 

  • Wamelink GWW, Joosten V, van Dobben HF, Berendse F. 2002. Validity of Ellenberg indicator values judged from physico-chemical field measurements. J Veg Sci 13:269–78

    Google Scholar 

  • Wamelink GWW, ter Braak CJF, van Dobben HF. 2003. Changes in large-scale patterns of plant biodiversity predicted from environmental scenarios. Landsc Ecol 18:513–27

    Article  Google Scholar 

  • Wamelink GWW, van Dobben HF. 2003. Uncertainty of critical loads based on the Ellenberg indicator value for acidity. Basic Appl Ecol 4:515–23

    Article  Google Scholar 

  • Weeda EJ, Schaminée JHJ, van Duuren L. 2002. Atlas van Plantengemeenschappen in Nederland 2: graslanden, zomen en droge heiden. Utrecht: KNNV Uitgeverij. p 224

    Google Scholar 

  • Wirth V. 1991. Zeigerwerte von Flechten. Scripta Geobotanica 18:215–37

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. F. van Dobben.

APPENDIX

APPENDIX

Appendix 1. Critical Loads per Combination of Association and Soil Type
Appendix 2. Comparison of Simulated and Empirical Critical Loads.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dobben, H., van Hinsberg, A., Schouwenberg, E. et al. Simulation of Critical Loads for Nitrogen for Terrestrial Plant Communities in The Netherlands. Ecosystems 9, 32–45 (2006). https://doi.org/10.1007/s10021-005-0052-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-005-0052-3

Keywords

Navigation