Skip to main content

Advertisement

Log in

Fungal Taxa Target Different Carbon Sources in Forest Soil

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Soil microbes are among the most abundant and diverse organisms on Earth. Although microbial decomposers, particularly fungi, are important mediators of global carbon and nutrient cycling, the functional roles of specific taxa within natural environments remain unclear. We used a nucleotide-analog technique in soils from the Harvard Forest to characterize the fungal taxa that responded to the addition of five different carbon substrates—glycine, sucrose, cellulose, lignin, and tannin-protein. We show that fungal community structure and richness shift in response to different carbon sources, and we demonstrate that particular fungal taxa target different organic compounds within soil microcosms. Specifically, we identified eleven taxa that exhibited changes in relative abundances across substrate treatments. These results imply that niche partitioning through specialized resource use may be an important mechanism by which soil microbial diversity is maintained in ecosystems. Consequently, high microbial diversity may be necessary to sustain ecosystem processes and stability under global change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Allison, S.D., Hanson, C.A., Treseder, K·K., 2007. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biology & Biochemistry 39, 1878–1887.

    Article  CAS  Google Scholar 

  • Amarasekare, P., 2003. Competitive coexistence in spatially structured environments: a synthesis. Ecology Letters 6, 1109–1122.

    Article  Google Scholar 

  • Bohannan, B.J.M., Kerr, B., Jessup, C.M., Hughes, J.B., Sandvik, G., 2002. Trade-offs and coexistence in microbial microcosms. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 81, 107–115.

    Article  CAS  Google Scholar 

  • Borneman, J., 1999. Culture-independent identification of microorganisms that respond to specified stimuli. Applied and Environmental Microbiology 65, 3398–3400.

    PubMed  CAS  Google Scholar 

  • Borneman, J., Hartin, R.J., 2000. PCR primers that amplify fungal rRNA genes from environmental samples. Applied and Environmental Microbiology 66, 4356–4360.

    Article  PubMed  CAS  Google Scholar 

  • Chao, A., 1984. Nonparametric estimation of the number of classes in a population. Scandinavian Journal of Statistics 11, 265–270.

    Google Scholar 

  • Chapin, F·S., Walker, B·H., Hobbs, R.J., Hooper, D.U., Lawton, J.H., Sala, O.E., Tilman, D., 1997. Biotic control over the functioning of ecosystems. Science 277, 500–504.

    Article  CAS  Google Scholar 

  • Chase, J.M., Leibold, M.A., 2003. Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago.

    Google Scholar 

  • Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D., 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research 31, 3497–3500.

    Article  PubMed  CAS  Google Scholar 

  • Chesson, P., 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31, 343–367.

    Article  Google Scholar 

  • Deacon, L.J., Pryce-Miller, E.J., Frankland, J.C., Bainbridge, B·W., Moore, P.D., Robinson, C·H., 2006. Diversity and function of decomposer fungi from a grassland soil. Soil Biology & Biochemistry 38, 7–20.

    Article  CAS  Google Scholar 

  • Felsenstein, J., 2005. PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle.

    Google Scholar 

  • Frankland, J.C., 1998. Fungal succession—unraveling the unpredictable. Mycological Research 102, 1–15.

    Article  Google Scholar 

  • Garrett, S.D., 1951. Ecological groups of soil fungi: a survey of substrate relationships. New Phytologist 50, 149–160.

    Article  Google Scholar 

  • Hagerman, A.E., Butler, L.G., 1978. Protein precipitation method for quantitative-determination of tannins. Journal of Agricultural and Food Chemistry 26, 809–812.

    Article  CAS  Google Scholar 

  • Hall, T.A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.

    CAS  Google Scholar 

  • Hawksworth, D.L., 2001. The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research 105, 1422–1432.

    Article  Google Scholar 

  • Hooper, D.U., Chapin, F·S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A.J., Vandermeer, J., Wardle, D.A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75, 3–35.

    Article  Google Scholar 

  • Kirk, T.K., Farrell, R.L., 1987. Enzymatic combustion—the microbial-degradation of lignin. Annual Review of Microbiology 41, 465–505.

    Article  PubMed  CAS  Google Scholar 

  • Kjøller, A.H., Struwe, S., 2002. Fungal communities, succession, enzymes, and decomposition. In: Burns, R.G., Dick, R.P. (Eds.), Enzymes in the environment: activity, ecology and applications. Marcel Dekker, New York, NY, pp. 267–284.

    Google Scholar 

  • Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., Wardle, D.A., 2001. Ecology-biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808.

    Article  PubMed  CAS  Google Scholar 

  • Lynd, L.R., Weimer, P.J., van Zyl, W·H., Pretorius, I·S., 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews 66, 506–577.

    Article  PubMed  CAS  Google Scholar 

  • Magurran, A.E., 1988. Ecological diversity and its measurement. Princeton University Press, Princeton NJ

    Google Scholar 

  • Marschner, P., Rumberger, A., 2004. Rapid changes in the rhizosphere bacterial community structure during re-colonization of sterilized soil. Biology and Fertility of Soils 40, 1–6.

    Article  Google Scholar 

  • McCune, B., Grace, J.B., 2002. Analysis of ecological communities. MjM Software Design, Glendon Beach, OR.

    Google Scholar 

  • McKane, R.B., Johnson, L.C., Shaver, G.R., Nadelhoffer, K.J., Rastetter, E.B., Fry, B., Giblin, A.E., Kielland, K., Kwiatkowski, B.L., Laundre, J.A., Murray, G., 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415, 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G., 2003. Microbial diversity and soil functions. Eur J Soil Sci 54, 655–670.

    Article  Google Scholar 

  • Peterjohn, W.T., Melillo, J.M., Steudler, P.A., Newkirk, K.M., Bowles, F·P., Aber, J.D., 1994. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications 4, 617–625.

    Article  Google Scholar 

  • R Development Core Team, 2006. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Robinson, C·H., Miller, E.J.P., Deacon, L.J., 2005. Biodiversity of saprotrophic fungi in relation to their function: do fungi obey the rules? In: Bardgett, R.D., Usher, M.B., Hopkins, D.W. (Eds.), Biological diversity and function in soils. Cambridge University Press, Cambridge, pp. 189–215.

    Google Scholar 

  • Schimel, J.P., Gulledge, J., 1998. Microbial community structure and global trace gases. Glob Chang Biol 4, 745–758.

    Article  Google Scholar 

  • Schloss, P.D., Handelsman, J., 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71, 1501–1506.

    Article  PubMed  CAS  Google Scholar 

  • Schoener, T.W., 1974. Resource partitioning in ecological communities. Science 185, 27–39.

    Article  PubMed  Google Scholar 

  • Swift, M.J., Heal, O·W., Anderson, J.M., 1979. Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Toljander, Y.K., Lindahl, B.D., Holmer, L., Högberg, N·O.S., 2006. Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148, 625–631.

    Article  PubMed  Google Scholar 

  • Torsvik, V., Øvreås, L., 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5, 240–245.

    Article  PubMed  CAS  Google Scholar 

  • Treseder, K·K., 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164, 347–355.

    Article  Google Scholar 

  • Waksman, S.A., Nissen, W., 1931. Lignin as a nutrient for the cultivated mushroom, Agaricus campestris. Science 74, 271–2.

    Article  PubMed  CAS  Google Scholar 

  • Waksman, S.A., Skinner, C.E., 1926. Microorganisms concerned in the decomposition of celluloses in the soil. Journal of Bacteriology 12, 57–84.

    PubMed  CAS  Google Scholar 

  • Waksman, S.A., Tenney, F.G., Stevens, K.R., 1928. The role of microorganisms in the transformation of organic matter in forest soils. Ecology 9, 126–144.

    Article  CAS  Google Scholar 

  • Waldrop, M.P., Balser, T.C., Firestone, M.K., 2000. Linking microbial community composition to function in a tropical soil. Soil Biology & Biochemistry 32, 1837–1846.

    Article  CAS  Google Scholar 

  • Waldrop, M.P., Firestone, M.K., 2004. Microbial community utilization of recalcitrant and simple carbon compounds: impact of oak-woodland plant communities. Oecologia 138, 275–284.

    Article  PubMed  Google Scholar 

  • Waldrop, M.P., Zak, D.R., Blackwood, C·B., Curtis, C.D., Tilman, D., 2006. Resource availability controls fungal diversity across a plant diversity gradient. Ecology Letters 9, 1127–1135.

    Article  PubMed  Google Scholar 

  • Wardle, D.A., 2006. The influence of biotic interactions on soil biodiversity. Ecology Letters 9, 870–886.

    Article  PubMed  Google Scholar 

  • White, T.J., Bruns, T.D., Lee, S·B., Taylor, J.W., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: a guide to methods and application. Academic Press, Inc., New York, NY, pp. 315–322.

    Google Scholar 

  • Wolters, V., Silver, W.L., Bignell, D.E., Coleman, D.C., Lavelle, P., Van der Putten, W·H., De Ruiter, P., Rusek, J., Wall, D.H., Wardle, D.A., Brussaard, L., Dangerfield, J.M., Brown, V·K., Giller, K.E., Hooper, D.U., Sala, O., Tiedje, J., Van Veen, J.A., 2000. Effects of global changes on above- and belowground biodiversity in terrestrial ecosystems: implications for ecosystem functioning. Bioscience 50, 1089–1098.

    Article  Google Scholar 

  • Yin, B., Crowley, D., Sparovek, G., De Melo, W.J., Borneman, J., 2000. Bacterial functional redundancy along a soil reclamation gradient. Applied and Environmental Microbiology 66, 4361–4365.

    Article  PubMed  CAS  Google Scholar 

  • Zak, J.C., Visser, S., 1996. An appraisal of soil fungal biodiversity: the crossroads between taxonomic and functional biodiversity. Biodiversity and Conservation 5, 169–183.

    Article  Google Scholar 

  • Zhou, J.Z., Xia, B·C., Treves, D.S., Wu, L.Y., Marsh, T.L., O’Neill, R.V., Palumbo, A.V., Tiedje, J.M., 2002. Spatial and resource factors influencing high microbial diversity in soil. Applied and Environmental Microbiology 68, 326–334.

    Article  PubMed  CAS  Google Scholar 

  • Zogg, G.P., Zak, D.R., Ringelberg, D.B., MacDonald, N·W., Pregitzer, K·S., White, D.C., 1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Science Society of America Journal 61, 475–481.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank J. B. H. Martiny, J. T. Randerson, K. N. Suding, and J. Talbot for valuable discussions and comments on previous drafts of this manuscript. We also thank J. Borneman for assistance with molecular techniques, C. A. Davies for conducting substrate mineralization assays, A. Majumder for conducting qPCR assays, J. B. H. Martiny for statistical advice, J. M. Melillo for access to field sites, J. Mohan for sample collection, and members of the Treseder and Suding labs for discussions. This research was supported by the U.S. Department of Energy, Grant No. DE-FG02-04ER63893; and by the National Science Foundation, Grant No. DEB-0445458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to China A. Hanson.

Additional information

K. K. T., M. A. B., and M. D. W. conceived the project. C. A. H. performed the molecular work and sequence alignments. M. A. B. performed the substrate-induced respiration experiment. S. D. A. and K. K. T. analyzed the data. C. A. H. wrote the article with input from the other authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, C.A., Allison, S.D., Bradford, M.A. et al. Fungal Taxa Target Different Carbon Sources in Forest Soil. Ecosystems 11, 1157–1167 (2008). https://doi.org/10.1007/s10021-008-9186-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-008-9186-4

Key words

Navigation