Skip to main content
Log in

The influence of particle orientation on the loading condition of pebbles in fluvial gravel

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2012

Abstract

The loading conditions of pebbles in fluvial gravel deposits were studied with different degrees of preferred particle orientation. Sediments that are comprised of non-spherical particles often show a preferred particle orientation, due to dynamic sedimentation. Here, the impact of this effect on the loading conditions of the particles and its implication on particle breakage was investigated by using discrete element simulations in three dimensions. The numerical models are based on the size and shape distribution of pebbles from a natural gravel sample. In addition, the particle size in some of the models was chosen to be uniform, to study the influence of the particle size distribution on the loading condition. Fluvial pebbles, whose shapes can be at best approximated by ellipsoids, were efficiently simulated in the discrete element models by the use of clumps. The results show that a preferred orientation of approximate ellipsoidal sedimentary particles has only a minor effect on the number and the position of particle contacts but leads to a significant load transfer from the rim to the centre of the oblate sides of the ellipsoidal particles, in comparison to an assembly of arbitrarily oriented particles. The comparison of the different particle size models indicates that the influence of the particle size distribution on the loading condition is relatively low. The results have significant implications for the breakage rate of non-spherical particles in sediments under load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arslan H., Baykal G., Sture S.: Analysis of the influence of crushing on the behavior of granular materials under shear. Granul. Matter 11(2), 87–97 (2009). doi:10.1007/s10035-009-0127-5

    Article  Google Scholar 

  2. Cheng Y.P., Nakata Y., Bolton M.D.: Discrete element simulation of crushable soil. Geotechnique 53(7), 633–641 (2003)

    Article  Google Scholar 

  3. Couroyer C., Ning Z., Ghadiri M.: Distinct element analysis of bulk crushing: Effect of particle properties and loading rate. Powder Technol. 109(1–3), 241–254 (2000)

    Article  Google Scholar 

  4. Marketos G., Bolton M.D.: Compaction bands simulated in discrete element models. J. Struct. Geol. 31(5), 479–490 (2009). doi:10.1016/j.jsg.2009.03.002

    Article  ADS  Google Scholar 

  5. Wang B.S., Chen Y., Wong T.F.: A discrete element model for the development of compaction localization in granular rock. J. Geophys. Res. Solid Earth 113(B03202), 1–17 (2008). doi:10.1029/2006jb004501

    Google Scholar 

  6. Tang C.A., Liu H.Y., Zhu W.C., Yang T.H., Li W.H., Song L., Lin P.: Numerical approach to particle breakage under different loading conditions. Powder Technol. 143–144, 130–143 (2004). doi:10.1016/j.powtec.2004.04.026

    Article  Google Scholar 

  7. Tsoungui O., Vallet D., Charmet J.C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105(1–3), 190–198 (1999)

    Article  Google Scholar 

  8. Gallagher J.J., Friedman M., Handin J., Sowers G.M.: Experimental studies relating to microfracture in sandstone. Tectonophysics 21(3), 203–247 (1974)

    Article  ADS  Google Scholar 

  9. Antony S.J., Kuhn M.R.: Influence of particle shape on granular contact signatures and shear strength: new insights from simulations. Int. J. Solids Struct. 41(21), 5863–5870 (2004). doi:10.1016/j.ijsolstr.2004.05.067

    Article  MATH  Google Scholar 

  10. Maeda K., Sakai H., Kondo A., Yamaguchi T., Fukuma M., Nukudani E.: Stress-chain based micromechanics of sand with grain shape effect. Granul. Matter 12(5), 499–505 (2010). doi:10.1007/s10035-010-0208-5

    Article  Google Scholar 

  11. Matsushima T., Chang C.S.: Quantitative evaluation of the effect of irregularly shaped particles in sheared granular assemblies. Granul. Matter 13(3), 269–276 (2011). doi:10.1007/s10035-011-0263-6

    Article  Google Scholar 

  12. Nouguier-Lehon C., Cambou B., Vincens E.: Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int. J. Numer. Anal. Met. 27(14), 1207–1226 (2003). doi:10.1002/Nag.314

    Article  MATH  Google Scholar 

  13. Massari F.: Upper-flow-regime stratification types on steep-face, coarse-grained, Gilbert-type progradational wedges (Pleistocene, southern Italy). J. Sediment. Res. 66(2), 364–375 (1996)

    Google Scholar 

  14. Sohn Y.K., Kim S.B., Hwang I.G., Bahk J.J., Choe M.Y., Chough S.K.: Characteristics and depositional processes of large-scale gravelly Gilbert-type foresets in the Miocene Doumsan fan delta, Pohang Basin, SE Korea. J. Sediment Res. 67(1), 130–141 (1997). doi:10.1306/d4268513-2b26-11d7-8648000102c1865d

    Google Scholar 

  15. Exner U., Grasemann B.: Deformation bands in gravels: displacement gradients and heterogeneous strain. J. Geol. Soc. Lond. 167(5), 905–913 (2010). doi:10.1144/0016-76492009-076

    Article  Google Scholar 

  16. Spahic D., Exner U., Behm M., Grasemann B., Haring A., Pretsch H.: Listric versus planar normal fault geometry: an example from the Eisenstadt-Sopron Basin (E Austria). Int. J. Earth Sci. 100(7), 1685–1695 (2011). doi:10.1007/s00531-010-0583-5

    Article  Google Scholar 

  17. Cundall P.A., Strack O.D.L.: Discrete numerical-model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  18. McDowell G.R., Ferellec J.F.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010). doi:10.1007/s10035-010-0205-8

    Article  Google Scholar 

  19. Potyondy D.O., Cundall P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41(8), 1329–1364 (2004)

    Article  Google Scholar 

  20. Hazzard J.F., Young R.P., Maxwell S.C.: Micromechanical modeling of cracking and failure in brittle rocks. J. Geophys. Res. Solid Earth 105(B7), 16683–16697 (2000)

    Article  Google Scholar 

  21. Ferellec J.F., McDowell G.R.: A method to model realistic particle shape and inertia in DEM. Granul. Matter 12(5), 459–467 (2010). doi:10.1007/s10035-010-0205-8

    Article  Google Scholar 

  22. Tuitz C., Exner U., Frehner M., Grasemann B.: The impact of ellipsoidal particle shape on pebble breakage in gravel. Int. J. Rock Mech. Min. Sci. 54, 70–79 (2012). doi:10.1016/j.ijrmms.2012.05.018

    Article  Google Scholar 

  23. Klette, R., Rosenfeld, A.: Digital Geometry, pp. 287–290. Elsevier, Amsterdam (2004)

  24. Tee, G.J.: Surface area of ellipsoid segment. University of Auckland, Department of Mathematics. http://www.math.auckland.ac.nz/Research/Reports/Series/539.pdf (2005) Accessed 9 January 2012

  25. Lu M., McDowell G.: The importance of modelling ballast particle shape in the discrete element method. Granul. Matter 9(1), 69–80 (2007). doi:10.1007/s10035-006-0021-3

    Article  Google Scholar 

  26. Radjai F., Wolf D.E., Jean M., Moreau J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

    Article  ADS  Google Scholar 

  27. Peters J.F., Muthuswamy M., Wibowo J., Tordesillas A.: Characterization of force chains in granular material. Phys. Rev. E 72(4), 041307 (2005). doi:10.1103/Physreve.72.041307

    Article  ADS  Google Scholar 

  28. Beard D.C., Weyl P.K.: Influence of texture on porosity and permeability of unconsolidated sand. Am. Assoc. Petr. Geol. B 57(2), 349–369 (1973)

    Google Scholar 

  29. Kondolf G.M., Adhikari A.: Weibull vs. lognormal distributions for fluvial gravels. J. Sediment. Res. 70(3), 456–460 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Tuitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuitz, C., Exner, U., Preh, A. et al. The influence of particle orientation on the loading condition of pebbles in fluvial gravel. Granular Matter 14, 639–649 (2012). https://doi.org/10.1007/s10035-012-0365-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0365-9

Keywords

Navigation