Skip to main content
Log in

Generating realistic 3D sand particles using Fourier descriptors

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents a novel method of generation of random realistic sand grains for use in three dimensional (3D) DEM simulations. Based on the concept of Fourier descriptors for sand grains proposed recently by the same authors, we first randomly generate three 2D contours of cross-section for a real sand particle in three orthogonal planes, and then develop a morphing technique to construct the external 3D surface of the particle to match these cross-sections. The proposed method is examined by application to the generation of six sands reported in the literature using the Fourier spectrums available for these sands. We show that with a proper correction on the smoothness and roundness of the orthogonal projection calibrated from the six sands, the method can generate fairly consistent results as compared to the real sands. Further validation of the proposed method on another three sands shows satisfactory performance. The advantages and limitations of the method, as well as relevant future applications of the work to granular material modelling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Taylor, D.W.: Fundamentals of Soil Mechanics. Wiley, New York (1948)

    Google Scholar 

  2. Mair, K., Frye, K.M., Maronez, C.: Influence of grain characteristics on the friction of granular shear zones. J. Geophys. Res. 107(B10), 2219 (2002)

    Article  ADS  Google Scholar 

  3. Damasceno, P.F., Engel, M., Glotzer, S.C.: Predictive self-assembly of polyhedra into complex structures. Science 337, 453 (2012)

    Article  ADS  Google Scholar 

  4. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  5. Thomas, P.A., Bray, J.D.: Capturing nonspherical shape of granular media with disk clusters. J. Geotech. Geoenviron. Eng. 125, 169–178 (1999)

    Article  Google Scholar 

  6. Jensen, R.P., Edil, T.B., Bosscher, P.J., Plesha, M.E., Ben Kahla, N.: Effect of particle shape on interface behavior of DEM-simulated granular materials. Int. J. Geomech. 1(1), 1–19 (2001)

    Google Scholar 

  7. Salot, C., Gotteland, P., Villard, P.: Influence of relative density on granular materials behavior: DEM simulation of triaxial tests. Granul. Matter. 11, 221–236 (2009)

    Article  Google Scholar 

  8. Stahl, M., Konietzky, H.: Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density. Granul. Matter. 13, 417–428 (2011)

    Article  Google Scholar 

  9. Katagiri, J., Matsushima, T., Yamada, Y.: Simple shear simulation of 3D irregularly-shaped particles by image-based DEM. Granul. Matter. 12, 491–497 (2010)

    Article  Google Scholar 

  10. Matsushima, T., Katagiri, J., Uesugi, K., Tsuchiyama, A., Nakano, T.: 3D shape characterization and image-based DEM simulation of the Lunar soil simulant FJS-1. J. Aerosp. Eng. 22(1), 15–23 (2009)

    Google Scholar 

  11. McDowel, G., Li, H., Lowndes, I.: The importance of particle shape in discrete-element modelling of particle flow in a chute. Geotech. Lett. 1(3), 59–64 (2011)

    Article  Google Scholar 

  12. Tillemans, H.-J., Herrmann, H.-J.: Simulating deformations of granular solids under shear. Phys. A. 217, 261–288 (1995a)

    Article  Google Scholar 

  13. Pournin, L., Weber, M., Tsukahara, M., Ferrez, J.-A., Ramaioli, M., Liebling, ThM: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2–3), 119–126 (2005)

    Article  MATH  Google Scholar 

  14. Azema, E., Radjai, F., Peyroux, R., Saussine, G.: Force transmission in a packing of pentagonal particles. Phys. Rev. E. 76, 011301 (2007)

    Article  ADS  Google Scholar 

  15. Azema, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41, 729–741 (2009)

    Article  Google Scholar 

  16. Pena, A.A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)

    Article  MATH  Google Scholar 

  17. Lu, M., McDowell, G.R.: The importance of modelling ballast particle shape in DEM. Granul. Matter 9(1–2), 71–82 (2007)

    Google Scholar 

  18. Richefeu, V., Mollon, G., Daudon, D., Villard, P.: Dissipative contacts and realistic block shapes for modelling rock avalanches. Eng. Geol. 19(150), 78–92 (2012). doi:10.1016/j.enggeo.2012.07.021

    Article  Google Scholar 

  19. Mollon, G., Richefeu, V., Villard, P., Daudon, D.: Numerical simulation of rock avalanches: influence of a local dissipative contact model on the collective behavior of granular flows. J. Geophys. Res. Solid Earth AGU 117, F02036 (2012). doi:10.1029/2011JF002202

    Article  ADS  Google Scholar 

  20. Tillemans, H.-J., Herrmann, H.-J.: Simulating deformations of granular solids under shear. Phys. A. 217, 261–288 (1995b)

    Article  Google Scholar 

  21. Galindo-Torres, S.-A., Pedroso, D.-M.: Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E. 81, 061303 (2010)

    Article  ADS  Google Scholar 

  22. Galindo-Torres, S.-A., Munoz, J.-D., Alonso-Marroquin, F.: Minkowski-Voronoi diagrams as a method to generate random packing of spheropolygons for the simulation of soils. Phys. Rev. E. 82, 056713 (2010)

    Article  ADS  Google Scholar 

  23. Ng, T.-T.: Particle shape effect on macro- and micro-behavior of monodisperse ellipsoids. Int. J. Numer. Anal. Methods Geomech. 33, 511–527 (2009)

    Article  Google Scholar 

  24. Ouadfel, H., Rothenburg, L.: “Stress-force fabric” relationship for assemblies of ellipsoids. Mech. Mater. 33, 201–221 (2001)

    Article  Google Scholar 

  25. Lin, X., Ng, T.T.: A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique 47(2), 319–329 (1997)

    Article  Google Scholar 

  26. Azema, E., Radjai, F.: Stress-strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E. 81, 051304 (2010)

    Article  ADS  Google Scholar 

  27. Fu, P., Dafalias, Y.: Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int. J. Numer. Anal. Methods Geomech. 35(18), 1918–1948 (2011)

    Article  Google Scholar 

  28. Mollon, G., Zhao, J.: Fourier–Voronoi-based generation of realistic samples for discrete modelling of granular materials. Granul. Matter 14, 621–638 (2012). doi:10.1007/s10035-012-0356-x

    Article  Google Scholar 

  29. Ehrlich, R., Weinberg, B.: An exact method for characterization of grain shape. J. Sediment. Petrol. 40(1), 205–212 (1970)

    Google Scholar 

  30. Meloy, T.P.: Fast Fourier transform applied to shape analysis of particle silhouettes to obtain morphological data. Powder Technol. 17, 27–35 (1977)

    Article  Google Scholar 

  31. Bowman, E.T., Soga, K., Drummond, W.: Particle shape characterization using Fourier descriptor analysis. Geotechnique 51(6), 545–554 (2001)

    Article  Google Scholar 

  32. Garboczi, E.J.: Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete. Cem. Concret. Res. 32(10), 1621–1638 (2002)

    Article  Google Scholar 

  33. Das, N.: Modeling Three-Dimensional Shape of Sand Grains Using Discrete Element Method, p. 149. PhD Thesis. University of South Florida (2007)

  34. Dobrohotoff, P.B., Imranullah, Azeezullah S.: Optimal description of two-dimensional complex-shaped objects using spheropolygons. Granul. Matter 14, 651–658 (2012)

    Article  Google Scholar 

  35. Vardhanabhuti, B.: The Coefficient of Eart Pressure at Rest and Deformation and Densification of Granular Soils Subjected to Static and Dynamic Loading, p. 1003. PhD Thesis. University of Illinois at Urbana-Champagn (2006)

  36. Mesri, G., Vardhanabhuti, B.: Compression of granular materials. Can. Geotech. J. 46, 369–392 (2009)

    Google Scholar 

  37. Ferellec, J.-F., McDowell, G.: A method to model realistic particle shape and inertia in DEM. Granul. Matter. 12, 459–467 (2010)

    Google Scholar 

  38. Hall, S.A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G., Béuelle, P.: Discrete and continuum analysis of localised deformation in sand using X-ray \(\mu \)CT and volumetric digital image correlation. Géotechnique 60(5), 315–322 (2010)

    Google Scholar 

  39. Hasan, A., Alshibli, K.: Three dimensional fabric evolution of sheared sand. Granul. Matter 14, 469–482 (2012)

    Article  Google Scholar 

  40. Ezaoui, A., Di Benedetto, H.: Experimental measurement of the global anisotropic elastic behaviour of dry Hostun sand during triaxial tests, and effect of sample preparation. Géotechnique 59(7), 621–635 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by Research Grants Council of Hong Kong through RGC/GRF 623609. The authors appreciate the comments provided by the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhem Mollon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mollon, G., Zhao, J. Generating realistic 3D sand particles using Fourier descriptors. Granular Matter 15, 95–108 (2013). https://doi.org/10.1007/s10035-012-0380-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0380-x

Keywords

Navigation