Skip to main content
Log in

Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This study presents the density dependent behavior of granular materials for varying intermediate principal stress \((\sigma _{{{2}}})\) in general triaxial loading using the discrete element method (DEM). The variation of intermediate principal stress is represented by a non-dimensional parameter \(b[={(\sigma _{{{2}}}-\sigma _{{{3}}})}/{(\sigma _{{{1}}} -\sigma _{{{3}}})}]\), where \(\sigma _{{{1}}}\) and \(\sigma _{{{3}}}\) are the major and minor principal stresses, respectively. Isotropically compressed dense and loose samples were prepared numerically using the periodic boundaries. The numerical dense and loose samples were subjected to shear deformation under strain controlled condition for different \(b\) values ranging from 0 to 1. The simulated macro results depict that the friction angle increases with \(b\) until it reaches a peak value and beyond the peak, the friction angle decreases with \(b\) regardless of the density of sample. A unique relationship between dilatancy index and equivalent deviatoric strain exists at small strain level for different \(b\) values when dense sample is considered. By contrast, the same relationship for loose sample does not show uniqueness. The relationships among the major, intermediate and minor principal strains depict non-linear behavior. The non-linearity is dominant for loose sample. The fluctuation in the evolution of strain increment vector direction is dominant in loose sample than dense sample. The evolution of different micro results is presented as well. It is noted that a unique relationship exists between the stress ratio and the fabric measure regardless of \(b\) and the density of sample when strong contacts are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Habib, P.: Influence of the variation of the average principal stress upon the shearing strength of soils. In: Proceedings of 3rd International Conference on Soil Mechanics and Foundation Engineering 1, pp. 131–136 (1953)

  2. Ko, H.-Y., Scott, R.F.: Deformation of sand at failure. J. Soil Mech. Found. Div. ASCE 94(4), 883–898 (1968)

    Google Scholar 

  3. Lade, P.V.: Cubical triaxial tests on cohesionless soil. J. Soil Mech. Found. Div. ASCE 99(SM10), 793–812 (1973)

    Google Scholar 

  4. Haruyama, M.: Anisotropic deformation-strength characteristics of an assembly of spherical particles under 3-D stresses. Soils Found 21(4), 41–55 (1981)

    Article  Google Scholar 

  5. Lam, W.-K., Tatsuoka, F.: Effects of initial anisotropic fabrics and \(\sigma _2\) on strength and deformation characteristics of sand. Soils Found 28(1), 89–106 (1988)

    Article  Google Scholar 

  6. Wang, Q., Lade, P.V.: Shear banding in true triaxial tests and its effect on failure in sand. J. Eng. Mech. ASCE 127(8), 754–761 (2001)

    Article  Google Scholar 

  7. Sun, D., Huang, W., Yao, Y.: An experimental study of failure and softening in sand under three-dimensional stress condition. Granul. Matter 10(3), 187–195 (2008)

    Article  Google Scholar 

  8. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  9. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Geotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  10. Lade, P.V., Duncan, J.M.: Elastoplastic stress-strain throry for cohesionless soil. J. Geotech. Eng. Div. 101(10), 1037–1053 (1975)

    Google Scholar 

  11. Ng, T.-T.: Shear strength of assemblies of ellipsoidal particles. Geotechnique 54(10), 659–669 (2004)

    Article  Google Scholar 

  12. Ogawa, S., Mitsui, S., Takemure, O.: Influence of intermediate principal stress on mechanical properties of a sand. In: Proceedings of 29th Annual Meeting of JSCE, Part 3, pp. 49–50 (1974)

  13. Lade, P.V.: Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int. J. Solids Struct. 13(11), 1019–1035 (1977)

    Article  MATH  Google Scholar 

  14. Lade, P.V.: Failure criterion for frictional materials. In: Desai, C.S., Gallagher, R.H. (eds.) Mechanics of Engineering Material, pp. 385–402. Wiley, New York (1984)

  15. Satake, M.: Consideration of yield criteria from the concept of metric space. Technol. Rep. Tohoku Univ. 40(2), 521–530 (1975)

    Google Scholar 

  16. Matsuoka, H., Nakai, T.: A generalized frictional law of soil shear deformation. In: Proceedings of US-Japan Seminar on Continuum-mechanical and Statistical Approaches in Mechanics of Granular Materials, Tokyo, pp. 138–154 (1978)

  17. Ng, T.-T.: Behavior of gravity deposited granular material under different stress paths. Can. Geotech. J. 42(6), 1644–1655 (2005)

    Google Scholar 

  18. Thornton, C.: Quasi-static simulations of compact polydisperse particle systems. Particuology 8(2), 119–126 (2010)

    Google Scholar 

  19. Sazzad, M.M., Suzuki, K., Modaressi-Farahmand-Razavi, A.: Macro-micro responses of granular materials under different b values using DEM. Int.l J. Geomech. ASCE 12(3), 220–228 (2012)

    Google Scholar 

  20. Kuhn, M.R.: OVAL and OVALPLOT: Programs for analyzing dense particle assemblies with the discrete element method”. http://faculty.up.edu/kuhn/oval/doc/oval_0618.pdf (2006). Last Accessed 9 July 2012

  21. Ng, T.-T.: Input parameters of discrete element methods. J. Eng. Mech. ASCE 132(7), 723–729 (2006)

    Article  Google Scholar 

  22. Ergun, M.U.: Evaluation of three-dimensional shear testing. In: Proceedings of 10 th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, Sweden, 1, pp. 593–596 (1981)

  23. Suzuki, K., Yanagisawa, E.: Principal deviatoric strain increment ratios for sand having inherent transverse isotropy. Int. J. Geomech. ASCE 6(5), 356–366 (2006)

    Article  Google Scholar 

  24. Matsuoka, H., Nakai, T.: Stress-deformation and strength characteristics of soil under three difference principal stresses. In: Proceedings of JSCE, 232, 59–70 (1974)

  25. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)

    Google Scholar 

  26. Ng, T.-T.: Macro- and micro-behaviors of granular materials under different sample preparation methods and stress paths. Int. J. solids. Struct. 41(21), 5871–5884 (2004)

    Article  MATH  Google Scholar 

  27. Sazzad, M.M., Suzuki, K.: Effect of interparticle friction on the cyclic behavior of granular materials using 2D DEM. J. Geotech. Geoenviron. Eng. ASCE 137(5), 545–549 (2011)

    Google Scholar 

  28. Satake, M.: Fabric tensor in granular materials. In: Vermeer P.A., Luger H.J. (eds.) Proceedings IUTAM Symposium on Deformation and Failure of Granular Materials, Delft, Balkema, pp. 63–68 (1982)

  29. Luding, S., Lätzel, M., Volk, W., Diebels, S., Herrmann, H.J.: From discrete element simulations to a continuum model. Comput. Methods Appl. Mech. Engrg. 191(1), 21–28 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Letter 80, 61–64 (1998)

    Article  ADS  Google Scholar 

  31. Suiker, A.S.J., Fleck, N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. ASME 71(3), 350–358 (2004)

    Article  ADS  MATH  Google Scholar 

  32. Azéma, E., Radjai, F., Peyroux, R., Saussine, G.: Force transmission in a packing of pentagonal particles. Phys. Rev. E 76(1), 01130 (2007)

    Article  Google Scholar 

  33. Antony, S.J.: Evolution of force distribution in three-dimensional granular media. Phys. Rev. E 63(1), 011302 (2001)

    Article  ADS  Google Scholar 

  34. Antony, S.J., Kuhn, M.R.: Influence of particle shape on granular contact signatures and shear strength: new insights from simulations. Int. J. Solids Struct. 41(21), 5863–5870 (2004)

    Article  MATH  Google Scholar 

  35. Azéma, E., Radjai, F., Saussine, G.: Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles. Mech. Mater. 41(6), 729–741 (2009)

    Article  Google Scholar 

  36. Ouadfel, H., Rothenburg, L.: ‘Stress-force-fabric’ relationship for assemblies of ellipsoids. Mech. Mater. 33(4), 201–221 (2001)

    Article  Google Scholar 

  37. Antony, S.J., Momoh, R.O., Kuhn, M.R.: Micromechanical modelling of oval particulates subjected to bi-axial compression. Computa. Mater. Sci. 29(4), 494–498 (2004)

    Article  Google Scholar 

  38. Alonso-Marroquin, F., Luding, S., Herrmann, H.J., Vardoulakis, I.: Role of the anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71, 051304 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Mahmud Sazzad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazzad, M.M., Suzuki, K. Density dependent macro-micro behavior of granular materials in general triaxial loading for varying intermediate principal stress using DEM. Granular Matter 15, 583–593 (2013). https://doi.org/10.1007/s10035-013-0422-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0422-z

Keywords

Navigation