Skip to main content
Log in

Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Understanding the evolution of microstructure in granular soils can provide significant insights into constitutive modeling of soil liquefaction. In this study, micromechanical perspectives of the liquefaction process are investigated using the Discrete Element simulation. It is observed that during various stages of undrained cyclic loading, the soil exhibits definitive change in the load-bearing structure, indicated by evolution of the coordination number and non-affine displacements. A new particle-void fabric, termed as “centroid distance”, is also proposed to quantify the evolution of particles and voids distribution in the granular packing. The fabric index is found to have strong correlation with cyclic mobility and post-liquefaction deformation of granular soils. Evolution of the fabric index indicates that particles and voids redistribute irreversibly before and after liquefaction. A highly anisotropic particle-void structure and loading-bearing capacity can be formed in the post liquefaction stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Ashmawy, A.K., Sukumaran, B., Hoang, V.V.: Evaluating the influence of particle shape on liquefaction behavior using discrete element modeling. Proc. 13th Int. Offshore Polar Eng. Conf. ISOPE Honol. 2, 542–549 (2003)

    Google Scholar 

  2. Bray, J., Sancio, R.: Assessment of the liquefaction susceptibility of fine-grained soils. J. Geotech. Geoenviron. Eng. 132(9), 1165–1177 (2006)

    Article  Google Scholar 

  3. Castro, G.: Liquefaction and cyclic mobility of saturated sands. J. Geotech. Eng. Div. ASCE 101(GT6), 551–569 (1975)

    Google Scholar 

  4. Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48, 339–44 (1981)

    Article  ADS  MATH  Google Scholar 

  5. Dafalias, Y.F., Manzari, M.T.: Simple plasticity sand model accounting for fabric change effect. J. Eng. Mech. ASCE 130(6), 622–634 (2004)

    Article  Google Scholar 

  6. Elgamal, A., Yang, Z., Parra, E., Ragheb, A.: Modeling of cyclic mobility in saturated cohesionless soils. Int. J. Plast. 19(6), 883–905 (2003)

    Article  MATH  Google Scholar 

  7. Goldenberg, C., Tanguy, A., Barrat, J.L.: Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field. Europhys. Lett. 80, 16003 (2007)

    Article  ADS  Google Scholar 

  8. Gu, X., Huang, M., Qian, J.: DEM investigation on the evolution of microstructure in granular soils under shearing. Granul. Matter 16, 91–106 (2014)

    Article  Google Scholar 

  9. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Idriss, I.M., Boulanger, R.W.: Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dyn. Earthq. Eng. 26, 115–130 (2006)

    Article  Google Scholar 

  11. Idriss, I.M., Boulanger, R.W.: Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute, Oakland, California (2008)

  12. Ishihara, K.: Liquefaction and flow failure during earthquakes. Géotechnique 43(3), 351–415 (1993)

    Article  Google Scholar 

  13. Kramer, S.L.: Geotechnical Earthquake Engineering, 1st edn. Prentice Hall, New Jersey (1996)

    Google Scholar 

  14. Li, X., Li, X.S.: Micro-macro quantification of the internal structure of granular materials. J. Eng. Mech. ASCE 135(7), 641–656 (2009)

    Article  Google Scholar 

  15. Mitchell, J., Soga, K.: Fundamentals of Soil Behavior. Wiley, New York (2005)

    Google Scholar 

  16. Ng, T.T., Dobry, R.: Numerical simulations of monotonic and cyclic loading of granular soil. J. Geotech. Eng. ASCE 120(2), 388–403 (1994)

    Article  Google Scholar 

  17. O’Sullivan, C.: Particulate Discrete Element Modelling, A Geomechanics Perspective. Spon Press, Oxon, UK (2011)

    Google Scholar 

  18. Radjaï, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80, 61–64 (1998)

    Article  ADS  Google Scholar 

  19. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39(4), 601–614 (1989)

    Article  Google Scholar 

  20. Satake, M.: Fabric tensor in granular materials. In: Proceedings IUTAM Conference on Deformation and Failure of Granular Materials, Delft, pp. 63–67 (1982)

  21. Seed, H.B., Lee, K.L.: Liquefaction of saturated sands during cyclic loading. J. Soil Mech. Found. Div. ASCE 92(SM6), 105–134 (1966)

    Google Scholar 

  22. Seed, R.B., Cetin, K.O., Moss, R.E.S., et al.: Recent advances in soil liquefaction engineering: a unified and consistent framework. EERC Report 2003-06, University of California, Berkeley (2003)

  23. Shamoto, Y., Zhang, J.M., Goto, S.: Mechanism of large post-liquefaction deformation in saturated sand. Soils Found. 37(2), 71–80 (1997)

    Article  Google Scholar 

  24. Shire, T., O’Sullivan, C., Barreto, D., Gaudray, G.: Quantifying stress-induced anisotropy using inter-void constrictions. Géotechnique 63(1), 85–91 (2013)

  25. Sitar N.: Slope stability in coarse sediments. In: Yong, R.N. (ed.) Special Publication on Geological Environmental and Soil Properties, ASCE, pp. 82–98 (1983)

  26. Sitharam, T.G., Vinod, J.S., Ravishankar, B.V.: Post-liquefaction undrained monotonic behavior of sands: experiments and DEM simulations. Géotechnique 59(9), 739–749 (2009)

    Article  Google Scholar 

  27. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J, Gladky, A., Kozicki, J., Modenese, C., Scholtès, L., Sibille, L., Stránský, J., Thoeni, K.: Yade documentation. In: Šmilauer V., (ed.) The Yade Project, 1st edn. http://yade-dem.org/doc/ (2010)

  28. Thornton, C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  MathSciNet  Google Scholar 

  29. Vaid, Y.P., Sivathayalan, S.: Static and cyclic liquefaction potential of Fraser Delta sand in simple shear and triaxial tests. Can. Geotech. J. 33(2), 281–289 (1996)

    Article  Google Scholar 

  30. Vaid, Y.P., Stedman, J.D., Sivathayalan, S.: Confining stress and static shear effects in cyclic liquefaction. Can. Geotech. J. 38(3), 580–591 (2001)

    Article  Google Scholar 

  31. Wang, G., Xie, Y.: Modified bounding surface hypoplasticity model for sands under cyclic loading. J. Eng. Mech. ASCE 140(1), 91–104 (2014)

    Article  Google Scholar 

  32. Wang, Z.L., Dafalias, Y.F., Shen, C.K.: Bounding surface hypoplasticity model for sand. J. Eng. Mech. ASCE 116(5), 983–1001 (1990)

    Article  Google Scholar 

  33. Yang, J., Sze, H.Y.: Cyclic behaviour and resistance of saturated sand under non-symmetrical loading conditions. Géotechnique 61(1), 59–73 (2011)

    Article  Google Scholar 

  34. Ye, J.H., Wang, G.: Seismic dynamics of offshore breakwater on liquefiable seabed foundation. Soil Dyn. Earthq. Eng. 76, 86–99 (2015)

    Article  Google Scholar 

  35. Youd, T.L.: Packing changes and liquefaction susceptibility. J. Geotech. Eng. Div. ASCE 103(8), 918–922 (1977)

    Google Scholar 

  36. Youd, T.L., Idriss, I.M., Andrus, R.D., Ignacio, A., Gonzalo, C., Christian, J.T., Dobry, R., Finn, W.D.L., et al.: Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. ASCE 127(10), 297–313 (2001)

    Article  Google Scholar 

  37. Zhao, J., Guo, N.: Unique critical state characteristics in granular media considering fabric anisotropy. Géotechnique 63, 695–704 (2013)

    Article  MathSciNet  Google Scholar 

  38. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics: With Special Reference to Earthquake Engineering. Wiley, New York (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

The study was financially supported by General Research Fund Grant No. 16213615, Research Project Competition (UGC/HKUST) Grant No. RPC11EG27 and Theme-based Research Scheme Grant No. T22-603/15N from Hong Kong Research Grants Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Wang.

Additional information

This article is part of the Topical Collection on Micro origins for macro behavior of granular matter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wei, J. Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process. Granular Matter 18, 51 (2016). https://doi.org/10.1007/s10035-016-0621-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-016-0621-5

Keywords

Navigation