Skip to main content
Log in

Enlightening force chains: a review of photoelasticimetry in granular matter

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A photoelastic material will reveal its internal stresses when observed through polarizing filters. This eye-catching property has enlightened our understanding of granular materials for over half a century, whether in the service of art, education, or scientific research. In this review article in honor of Robert Behringer, we highlight both his pioneering use of the method in physics research, and its reach into the public sphere through museum exhibits and outreach programs. We aim to provide clear protocols for artists, exhibit-designers, educators, and scientists to use in their own endeavors. It is our hope that this will build awareness about the ubiquitous presence of granular matter in our lives, enlighten its puzzling behavior, and promote conversations about its importance in environmental and industrial contexts. To aid in this endeavor, this paper also serves as a front door to a detailed wiki containing open, community-curated guidance on putting these methods into practice (Abed-Zadeh et al. in Photoelastic methods wiki https://git-xen.lmgc.univ-montp2.fr/PhotoElasticity/Main/wikis/home, 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Frocht, M.M.: Photoelasticity: The Selected Scientific Papers of MM Frocht, vol. 2. Pergamon, New York (1969)

    Google Scholar 

  2. Cloud, G.: Photoelasticity, pp. 55–56. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. Daniels, K.E., Kollmer, J.E., Puckett, J.G.: Photoelastic force measurements in granular materials. Rev. Sci. Instrum. 88(5), 051808 (2017)

    ADS  Google Scholar 

  4. Cox, M., Wang, D., Barés, J., Behringer, R.P.: Self-organized magnetic particles to tune the mechanical behavior of a granular system. Europhys. Lett. 115(6), 64003 (2016)

    ADS  Google Scholar 

  5. Wakabayashi, T.: Photo-elastic method for determination of stress in powdered mass. J. Phys. Soc. Jpn. 5(5), 383–385 (1950)

    ADS  Google Scholar 

  6. Dantu, P.: Proceedings of the 4th international conference on soil mechanics and foundations engineering (1957)

  7. Drescher, A., De Jong De Josselin, G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 20(5), 337–340 (1972)

    ADS  Google Scholar 

  8. Liu, C.H., Nagel, S.R., Schecter, D.A., Coppersmith, S.N., Majumdar, S., Narayan, O., Witten, T.A.: Force fluctuations in bead packs. Science 269(5223), 513–515 (1995)

    ADS  Google Scholar 

  9. Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2d granular couette experiment: a continuous transition. Phys. Rev. Lett. 82(26), 5241 (1999)

    ADS  Google Scholar 

  10. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435(7045), 1079 (2005)

    ADS  Google Scholar 

  11. Amon, A., Born, P., Daniels, K.E., Dijksman, J.A., Huang, K., Parker, D., Schröter, M., Stannarius, R., Wierschem, A.: Preface: focus on imaging methods in granular physics (2017)

  12. Barés, J., Mora, S., Delenne, J.-Y., Fourcaud, T.: Experimental observations of root growth in a controlled photoelastic granular material. In: EPJ Web of Conferences, vol. 140. EDP Sciences, p. 14008 (2017)

    Google Scholar 

  13. Kollmer, J.E.: Photoelastic grain solver (pegs). https://github.com/jekollmer/PEGS (2018)

  14. Lantsoght, O., Docquier, N.: Photoelastic grain solver with pyhton (pegspy). https://git.immc.ucl.ac.be/olantsoght/pegs_py (2018)

  15. Barés, J., Wang, D., Wang, D., Bertrand, T., O’Hern, C.S., Behringer, R.P.: Local and global avalanches in a two-dimensional sheared granular medium. Phys. Rev. E 96(5), 052902 (2017)

    ADS  Google Scholar 

  16. Abed-Zadeh, A., Barés, J., Socolar, J., Behringer, R.P.: Seismicity in sheared granular matter. arXiv preprint arXiv:1810.12243 (2018)

  17. Geng, J., Howell, D., Longhi, E., Behringer, R.P., Reydellet, G., Vanel, L., Clément, E., Luding, S.: Footprints in sand: the response of a granular material to local perturbations. Phys. Rev. Lett. 87(3), 035506 (2001)

    ADS  Google Scholar 

  18. Zhang, J., Majmudar, T.S., Tordesillas, A., Behringer, R.P.: Statistical properties of a 2d granular material subjected to cyclic shear. Granul. Matter 12(2), 159–172 (2010)

    Google Scholar 

  19. Majmudar, T.S., Sperl, M., Luding, S., Behringer, R.P.: Jamming transition in granular systems. Phys. Rev. Lett. 98(5), 058001 (2007)

    ADS  Google Scholar 

  20. Bi, D., Zhang, J., Chakraborty, B., Behringer, R.P.: Jamming by shear. Nature 480, 355–358 (2011)

    ADS  Google Scholar 

  21. Ren, J., Dijksman, J.A., Behringer, R.P.: Reynolds pressure and relaxation in a sheared granular system. Phys. Rev. Lett. 110(1), 018302 (2013)

    ADS  Google Scholar 

  22. Zheng, H., Dijksman, J.A., Behringer, R.P.: Shear jamming in granular experiments without basal friction. EPL (Europhys. Lett.) 107(3), 34005 (2014)

    ADS  Google Scholar 

  23. Wang, D., Ren, J., Dijksman, J.A., Zheng, H., Behringer, R.P.: Microscopic origins of shear jamming for 2d frictional grains. Phys. Rev. Lett. 120, 208004 (2018)

    ADS  Google Scholar 

  24. Clark, A.H., Kondic, L., Behringer, R.P.: Particle scale dynamics in granular impact. Phys. Rev. Lett. 109(23), 238302 (2012)

    ADS  Google Scholar 

  25. Lim, M.X., Barés, J., Zheng, H., Behringer, R.P.: Force and mass dynamics in non-Newtonian suspensions. Phys. Rev. Lett. 119(18), 184501 (2017)

    ADS  Google Scholar 

  26. Zheng, H., Wang, D., Chen, D.Z., Wang, M., Behringer, R.P.: Intruder friction effects on granular impact dynamics. Phys. Rev. E 98, 032904 (2018)

    ADS  Google Scholar 

  27. Zuriguel, I., Mullin, T.: The role of particle shape on the stress distribution in a sandpile. Proc. R. Soc. A: Math. Phys. Eng. Sci. 464(2089), 99–116 (2008)

    ADS  MathSciNet  Google Scholar 

  28. Lherminier, S., Planet, R., Simon, G., Vanel, L., Ramos, O.: Revealing the structure of a granular medium through ballistic sound propagation. Phys. Rev. Lett. 113(9), 098001 (2014)

    ADS  Google Scholar 

  29. Shukla, A.: Dynamic photoelastic studies of wave propagation in granular media. Opt. Lasers Eng. 14(3), 165–184 (1991)

    Google Scholar 

  30. Owens, E.T., Daniels, K.E.: Sound propagation and force chains in granular materials. Europhys. Lett. 94(5), 54005 (2011)

    ADS  Google Scholar 

  31. Huillard, G., Noblin, X., Rajchenbach, J.: Propagation of acoustic waves in a one-dimensional array of noncohesive cylinders. Phys. Rev. E 84, 016602 (2011)

    ADS  Google Scholar 

  32. Puckett, J.G., Daniels, K.E.: Equilibrating temperaturelike variables in jammed granular subsystems. Phys. Rev. Lett. 110(5), 058001 (2013)

    ADS  Google Scholar 

  33. Bililign, E.S., Kollmer, J.E., Daniels, K.E.: Protocol dependence and state variables in the force-moment ensemble. Phys. Rev. Lett. 122(3), 038001 (2019)

    ADS  Google Scholar 

  34. Kollmer, J., Daniels, K.: Betweenness centrality as predictor for forces in granular packings. Soft Matter (2018). https://doi.org/10.1039/C8SM01372A

    Article  Google Scholar 

  35. Coulais, C., Seguin, A., Dauchot, O.: Shear modulus and dilatancy softening in granular packings above jamming. Phys. Rev. Lett. 113(19), 198001 (2014)

    ADS  Google Scholar 

  36. Iikawa, N., Bandi, M.M., Katsuragi, H.: Sensitivity of granular force chain orientation to disorder-induced metastable relaxation. Phys. Rev. Lett. 116(12), 128001 (2016)

    ADS  Google Scholar 

  37. Mahabadi, N., Jang, J.: The impact of fluid flow on force chains in granular media. Appl. Phys. Lett. 110(4), 041907 (2017)

    ADS  Google Scholar 

  38. Wendell, D.M., Luginbuhl, K., Guerrero, J., Hosoi, A.E.: Experimental investigation of plant root growth through granular substrates. Exp. Mech. 52(7), 945–949 (2012)

    Google Scholar 

  39. Kolb, E., Hartmann, C., Genet, P.: Radial force development during root growth measured by photoelasticity. Plant Soil 360, 19–35 (2012)

    Google Scholar 

  40. Daniels, K.E., Hayman, N.W.: Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. 113(B11), B11411 (2008)

    ADS  Google Scholar 

  41. Hayman, N.W., Ducloué, L., Foco, K.L., Daniels, K.E.: Granular controls on periodicity of stick-slip events: kinematics and force-chains in an experimental fault. Pure Appl. Geophys. 168(12), 2239–2257 (2011)

    ADS  Google Scholar 

  42. Geller, D.A., Ecke, R.E., Dahmen, K.A., Backhaus, S.: Stick-slip behavior in a continuum-granular experiment. Phys. Rev. E 92(6), 060201 (2015)

    ADS  Google Scholar 

  43. Lherminier, S., Planet, R., Levy dit Vehel, V., Simon, G., Vanel, L., Maloy, K.J., Ramos, O.: Continuously sheared granular matter reproduces in detail seismicity laws. arXiv:1901.06735 (2019, January)

  44. Abed-Zadeh, A., Barés, J., Brzinski, T., Daniels, K.E., Dijksman, J., Docqiuer, N., Everitt, H., Kollmer, J., Lantsoght, O., Wang, D., Workamp, M., Zhao, Y., Zheng, H.: Photoelastic methods wiki. https://git-xen.lmgc.univ-montp2.fr/PhotoElasticity/Main/wikis/home (2019)

  45. Majmudar, T.S.: Experimental Studies of Two-Dimensional Granular Systems Using Grain-Scale Contact Force Measurements. PhD thesis, Duke University (2006)

  46. Precision urethane pads. http://www.precisionurethane.com/polyurethane-pads.html

  47. Clear flex™, castable urethane from smooth-on. https://www.smooth-on.com/product-line/clear-flex/

  48. Vishay pads. http://www.vishaypg.com/micro-measurements/photo-stress-plus

  49. Wang, D.: Response of Granular Materials to Shear: Origins of Shear Jamming, Particle Dynamics, and Effects of Particle Properties. PhD thesis, Duke University (2018)

  50. Mold star™, castable silicone from smooth-on. https://www.smooth-on.com/product-line/mold-star/

  51. So strong™, dye for urethane from smooth-on. https://www.smooth-on.com/product-line/strong/

  52. Kilcast, D., Boyar, M.M., Hudson, J.B.: Gelatin photoelasticity: a new technique for measuring stress distributions in gels during penetration testing. J. Food Sci. 49(2), 654–655 (1984)

    Google Scholar 

  53. Workamp, M., Alaie, S., Dijksman, J.A.: What is fluidity? Designing an experimental system to probe stress and velocity fluctuations in flowing suspensions. In: EPJ Web of Conferences, vol. 140. EDP Sciences, p. 03020 (2017)

    Google Scholar 

  54. Tomlinson, R.A., Taylor, Z.A.: Photoelastic materials and methods for tissue biomechanics applications. Opt. Eng. 54(8), 081208 (2015)

    Google Scholar 

  55. Damink, L.H.O., Dijkstra, P.J., Van Luyn, M.J.A., Van Wachem, P.B., Nieuwenhuis, P., Feijen, J.: Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. J. Mater. Sci. Mater. Med. 6(8), 460–472 (1995)

    Google Scholar 

  56. Workamp, M., Alaie, S., Dijksman, J.A.: Coaxial air flow device for the production of millimeter-sized spherical hydrogel particles. Rev. Sci. Instrum. 87(12), 125113 (2016)

    ADS  Google Scholar 

  57. Lherminier, S., Planet, R., Simon, G., Måløy, M., Vanel, L., Ramos, O.: A granular experiment approach to earthquakes. Rev. Cubana Fís 33(1), 55–58 (2016)

    Google Scholar 

  58. Veroclear™, printable transparent photoelastic material from smooth-on. https://www.stratasys.com/materials/search/veroclear

  59. Wang, L., Ju, Y., Xie, H., Ma, G., Mao, L., He, K.: The mechanical and photoelastic properties of 3d printable stress-visualized materials. Sci. Rep. 7(1), 10918 (2017)

    ADS  Google Scholar 

  60. Polarization, a company which sells polarizers and quater-waves plates by the foot. http://www.polarization.com/polarshop/

  61. Zhao, Y., Barés, J., Zheng, H., Behringer, R.P.: Tuning strain of granular matter by basal assisted couette shear. In: EPJ Web of Conferences, vol.140, p. 03049. EDP Sciences (2017)

  62. Shattuck, M.D.: Experimental techniques. In: Franklin, S.V., Shattuck, M.D. (eds.) Handbook of Granular Materials. CRC Press, Boca Raton (2015)

    Google Scholar 

  63. Peng, T., Balijepalli, A., Gupta, S.K., LeBrun, T.: Algorithms for on-line monitoring of micro spheres in an optical tweezers-based assembly cell. J. Comput. Inf. Sci. Eng. 79, 330–338 (2007)

    Google Scholar 

  64. Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179(1), 298–310 (1996)

    ADS  Google Scholar 

  65. Blair, D., Dufresne, E.: Matlab particle tracking code repository. http://site.physics.georgetown.edu/matlab/

  66. Willert, C.E., Gharib, M.: Digital particle image velocimetry. Exp. Fluids 10(4), 181–193 (1991)

    Google Scholar 

  67. Landau, L.D., Lifshitz, E.M.: Theory of elasticity, vol. 7. Course Theor. Phys. 3, 109 (1986)

    Google Scholar 

  68. Abed-Zadeh, A., Barés, J., Behringer, R.P.: Crackling to periodic dynamics in granular media. Phys. Rev. E 99(4), 040901 (2019b)

    ADS  Google Scholar 

  69. Zhao, Y., Zheng, H., Wang, D., Wang, M., Behringer, R.P.: Particle scale force sensor based on intensity gradient method in granular photoelastic experiments. New J. Phys. 21, 023009 (2019). https://doi.org/10.1088/1367-2630/ab05e7

    Article  ADS  Google Scholar 

  70. Majmudar, T.S.: Experimental studies of two-dimensional granular systems using grain-scale contact force measurements (Doctoral Dissertation). Duke University (2006)

  71. Farhadi, S., Behringer, R.P: Dynamics of sheared ellipses and circular disks: effects of particle shape. Phys. Rev. Lett. 112(14), 148301 (2014)

    ADS  Google Scholar 

  72. Farhadi, S., Zhu, A.Z, Behringer, R.P: Stress relaxation for granular materials near jamming under cyclic compression. Phys. Rev. Lett. 115(18), 188001 (2015)

    ADS  Google Scholar 

  73. Iikawa, N., Bandi, M.M., Katsuragi, H.: Structural evolution of a granular pack under manual tapping. J. Phys. Soc. Jpn. 84(9), 094401 (2015). https://doi.org/10.7566/JPSJ.84.094401

    Article  ADS  Google Scholar 

  74. Lantsoght, O.: Couplage entre dynamique multicorps et méthode des éléments discrets: modélisation et expérimentation. phdthesis, Université Catholique de Louvain (2019)

  75. Timoshenko, S., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  76. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    ADS  Google Scholar 

  77. Yu, P., Frank-Richter, S., Börngen, A., Sperl, M.: Monitoring three-dimensional packings in microgravity. Granul. Matter 16(2), 165–173 (2014)

    Google Scholar 

  78. Mahon, R.J., Murphy, J.A., Lanigan, W.: Digital holography at millimetre wavelengths. Opt. Commun. 260(2), 469–473 (2006)

    ADS  Google Scholar 

  79. Heimbeck, M.S., Kim, M.K., Gregory, D.A., Everitt, H.O.: Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods. Opt. Express 19(10), 9192–9200 (2011)

    ADS  Google Scholar 

  80. Everitt, H.O., Tyler, T., Caraway, B.D., Bingham, C.M., Llopis, A., Heimbeck, M.S., Padilla, W.J., Smith, D.R., Jokerst, N.M.: Strain sensing with metamaterial composites. Adv. Opt. Mater. 7, 1801397 (2019)

    Google Scholar 

  81. Thomas, A.L., Vriend, N.M.: Photoelastic study of dense granular free-surface flows. preprint (2019)

Download references

Acknowledgements

We would like to thank Rémy Mozul for his technical support with the wiki [44]. Several conversations and collaborations have led to sharing the techniques described in this paper. We are grateful to Bernie Jelinek and Richard Nappi for sharing their technical knowledge about photoelastic material cutting. The outlook section contains insights gained from Chris M. Bingham, Willie J. Padilla, Anthony Llopis and Nan M. Jokerst (recent work on terahertz photoelasticity), and from Nathalie Vriend and Amalia Thomas (fast-imaging photoelasticity). Finally, we thank the late Robert Behringer for his kindness, his depth of knowledge gained from developing photoelastic techniques for two decades, and his stimulating attitude towards every new generation of scientists passing through his laboratory. This review article is a product of his excellent mentorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Barés.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed Zadeh, A., Barés, J., Brzinski, T.A. et al. Enlightening force chains: a review of photoelasticimetry in granular matter. Granular Matter 21, 83 (2019). https://doi.org/10.1007/s10035-019-0942-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0942-2

Keywords

Navigation