Skip to main content
Log in

Energy dissipative braking structures for avalanches evaluated by a full avalanche dynamic model

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Classical avalanche defending structures aim to catch and deflect the motion of avalanches, this paper proposes several types of step-pool-type and side braking structures to reduce the avalanche impact and investigates their energy dissipation efficiency. In our study, the adoption of µ(I) rheology into the framework of N–S(Navier–Stokes)-type governing equations enables the 3D (three-dimensional) description of the hard-to-predict dynamic properties of avalanche with low computational cost. In particular, our approach overcomes limits imposed with depth-averaged models currently used, and has the potential to capture the braking effect of these defending structures accurately. A numerical program was developed on the open-source platform OpenFOAM specifically for the full model to simulate the entire evolutionary process of the avalanche as well as the obstruction of braking structures. Laboratory experiments are also conducted to verify the simulation. Clearly, our analysis of different cases indicates that avalanches are effectively blocked by side and step-pool-type structures as well as baffle piles, whose energy dissipation effect are significantly affected by their configurations. Simulation results deliver supportive information for the design of avalanche defending structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets in the current study are available from the corresponding author on reasonable request.

Abbreviations

N-S:

Navier-Stokes

VOF:

Volume-of-fluid method

DEM:

Discrete element method

SPH:

Smoothed particle hydrodynamics method

FVM:

Finite volume method

References

  1. Abdelrazek, A.M., Kimura, I., Shimizu, Y.: Numerical simulation of granular flow past simple obstacles using the SPH method. J. Jap. Soc. Civ. Eng. Ser. B1 Hydr. Eng. 71(4), 199204 (2015)

    Google Scholar 

  2. Abrahams, A.D., Atkinson, J.F.: Relation between grain velocity and sediment concentration. Water Resour. Res. 29(9), 3021–3028 (1993)

    Article  ADS  Google Scholar 

  3. Barker, T., Gray, J.: Partial regularisation of the incompressible μ(I)-rheology for granular flow. J. Fluid Mech. 828, 5–32 (2017). https://doi.org/10.1017/jfm.2017.428

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Bi, Y.Z., Li, M.J., Wang, D.P., Zheng, L., Yan, S.X., He, S.M.: A numerical study of viscous granular flow in artificial step-pool systems: flow characteristics and structure optimization. Acta Geotech. (2023). https://doi.org/10.1007/s11440-023-01933-1

    Article  Google Scholar 

  5. Bi, Y.Z., He, S., Du, Y.J., Sun, X., Li, X.: Effects of the configuration of a baffle–avalanche wall system on rock avalanches in Tibet Zhangmu: discrete element analysis. B. Eng. Geol. Environ. 78, 2267–2282 (2018)

    Article  Google Scholar 

  6. Bi, Y., Sun, X., Zhao, H., Li, Q., He, K., Zhou, R., Ji, W.: Comparison regarding the effects of different baffle systems as impacted by rock avalanches. Int. J. Civ. Eng. 19, 127–144 (2021)

    Article  Google Scholar 

  7. Bi, Y.Z., Wang, D.P., Yan, S.X., Li, Q.Z., He, S.M.: Research on the blocking effect of baffle-net structure on rock avalanches: consider the influence of particle splashing. B. Eng. Geol. Environ. 82(7), 1–19 (2023)

    Article  Google Scholar 

  8. Carosi, G., Chanson, H.: Turbulence characteristics in skimming flows on stepped spillways. Can. J. Civ. Eng. 35(9), 865–880 (2008)

    Article  Google Scholar 

  9. Chanson, H.: The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse (2001)

    Google Scholar 

  10. Choi, C.E., Ng, C.W.W., Law, R.P.H., Song, D., Ho, K.K.S.: Computational investigation of baffle configuration on impedance of channelized debris flow. Can. Geotech. J. 52, 182–197 (2014)

    Article  Google Scholar 

  11. Cosenza, E., Cozzolino, L., Pianese, D., Fabbrocino, G., Acanfora, M.: Concrete Structures for Mitigation of Debris-Flow Hazard in the Montoro Inferiore Area, Southern Italy. In: 2nd International Congress, IFSC, Naples, p. 1e12 (2006)

  12. Cui, X., Gray, J.: Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid Mech. 720, 314–337 (2013)

    Article  MATH  ADS  Google Scholar 

  13. Cuomo, S., Cascini, L., Pastor, M., Petrosino, S.: Modelling the propagation of debris avalanches in presence of obstacles 4th World Landslide Forum, pp. 469–475. Ljubjana, Slovenia (2017)

    Google Scholar 

  14. Davies, T.R., Sutherland, A.J.: Resistance to flow past deformable boundaries. Earth. Surf. Process. 5, 175–179 (1980)

    Article  Google Scholar 

  15. Depken, M., Lechman, J.B., Van Hecke, M., Saarloos, W., Grest, G.S.: Stresses in smooth flows of dense granular media. EPL 78, 58001 (2007)

    Article  ADS  Google Scholar 

  16. Fei, J.B., Jie, Y.X., Sun, X., Chen, X.: Experimental investigation on granular flow past baffle piles and numerical simulation using a μ(I)-rheology-based approach. Powder Technol. 359, 36–46 (2020)

    Article  Google Scholar 

  17. Fei, J.B., Jie, Y.X., Hong, C., et al.: Modelling of avalanche-obstacle interaction using the depth-averaged continuum approach. Granular Matter 22, 31 (2020)

    Article  Google Scholar 

  18. Fei, J.B., Jie, Y.X., Sun, X.H., Xiong, H.: Physical interpretation of shear-rate behaviour of soils and geotechnical solution to the coefficient of start-up friction with low inertial number. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  19. Fei, J.B., Jie, Y.X., Zhao, D.B., Zhang, B.Y.: Simulation of natural shallow avalanches with the μ(I) rheology. Bull. Eng. Geol. Environ. 79, 4123–4134 (2020)

    Article  Google Scholar 

  20. Ferziger, J.H., Perić, M., Street, R.L.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  21. Forterre, Y., Pouliquen, O.: Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 21–50 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  22. Franci, A., Cremonesi, M.: 3D regularized μ(I)-rheology for granular flows simulation. J. Comput. Phys. 378(2019), 257–277 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  ADS  Google Scholar 

  24. Issa, R.I.: Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  ADS  Google Scholar 

  26. Juez, C., Caviedes-Voullième, D., Murillo, J., García-Navarro, P.: 2D dry granular free-surface transient flow over complex topography with obstacles part II: numerical predictions of fluid structures and benchmarking. Comput. Geosci. 73, 142–163 (2014)

    Article  ADS  Google Scholar 

  27. Kattel, P., Kafle, J., Fischer, J.T., Mergili, M., Tuladhar, B.M., Pudasaini, S.P.: Interaction of two-phase debris flow with obstacles. Eng. Geol. 242, 197–217 (2018)

    Article  Google Scholar 

  28. Kattel, P., Tuladhar, B.M.: Interaction of two-phase debris flow with lateral converging shear walls. J. Nepal Math. Soc. 1, 40–52 (2018)

    Article  Google Scholar 

  29. Lagrée, P.Y., Staron, L., Popinet, S.: The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology. J. Fluid Mech. 686, 378–408 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  30. Liu, Z., Fei, J., Jie, Y.: Including μ (I) rheology in three-dimensional Navier–stokes-governed dynamic model for natural avalanches. Powder Technol. 396, 406–432 (2022)

    Article  Google Scholar 

  31. Naaim, M., Faug, T., Naaim, F., Eckert, N.: Return period calculation and passive structure design at the Taconnaz avalanche path, France. Ann. Glaciol. 51(54), 89–97 (2010)

    Article  ADS  Google Scholar 

  32. Pouliquen, O., Forterre, Y.: Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002)

    Article  MATH  ADS  Google Scholar 

  33. Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. Earth. Sur. 117, F03010 (2012)

    ADS  Google Scholar 

  34. Rajaratnam, N.: Skimming flow in stepped spillways. J. Hydr. Eng. ASCE 116(4), 587–591 (1990)

    Article  Google Scholar 

  35. Rauter, M.: The compressible granular collapse in a fluid as a continuum: validity of a Navier-Stokes model with μ(I)-rheology. J. Fluid Mech. 915, 87 (2021)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Rauter, M., Barker, T., Fellin, W.: Granular viscosity from plastic yield surfaces: the role of the deformation type in granular flows. Comput. Geotech. 122, 103492 (2020). https://doi.org/10.1016/j.compgeo.202.103492

    Article  Google Scholar 

  37. Silbert, L.E., Ertaş, D., Grest, G.S., Halsey, T.C., Levine, D., Plimpton, S.J.: Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302 (2001)

    Article  ADS  Google Scholar 

  38. Teufelsbauer, H., Wang, Y., Chiou, M.C., Wu, W.: Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment. Granul. Matter 11(4), 209–220 (2009)

    Article  MATH  Google Scholar 

  39. Teufelsbauer, H., Wang, Y., Pudasaini, S.P., Borja, R.I., Wu, W.: DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech. 6, 119–133 (2011)

    Article  Google Scholar 

  40. Wang, Y., Cheng, Q.G., Zhu, Q.: Inverse grading analysis of deposit from rock avalanches triggered by Wenchuan earthquake. Chin. J. Rock Mech. Eng. 31, 1089–1106 (2012)

    Google Scholar 

  41. Whittaker, J.G., Jaeggi, M.N.R.: Origin of step-pool systems in mountain streams. J. Hydraul. Div. Am. Soc. Civ. Eng. 108, 758–773 (1982)

    Google Scholar 

  42. Zhang, Y.S., Ba, R.J., Ren, S.S., Li, Z.L.: An analysis of geo-mechanism of the Baige landslide in Jinsha River, Tibet. Geol. China 47(6), 9 (2020) (in Chinese)

    Google Scholar 

  43. Zhong, Q.M., Chen, S.S., Shan, Y.B.: Numerical modeling of breaching process of Baige dammed lake on Jinsha River. Adv. Eng. Sci. 52, 29–37 (2020)

    Google Scholar 

Download references

Acknowledgements

The research is funded by the National Natural Science Foundation of China (NSFC) under Grant Nos. 52178339 and 52008261, China Postdoctoral Science Foundation (2022M723533), Chongqing Research Institute of Harbin Institute of Technology (Grant No. 20222001973), and Shenzhen Natural Science Fund (the Stable Support Plan Program 20220808150117002). We thank Richard Haase, PhD, for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Jie.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, J., Liu, Z., Ou, F. et al. Energy dissipative braking structures for avalanches evaluated by a full avalanche dynamic model. Granular Matter 25, 79 (2023). https://doi.org/10.1007/s10035-023-01369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01369-0

Keywords

Navigation