Skip to main content
Log in

Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

A new soluble polymer on 2-[(2E)-1-methyl-2-buten-1-yl]aniline and its copolymers with aniline basis have been synthesized in various molar ratios. For all samples, the electrical conductivity, morphology, solubility, electrochemical properties, as well as spectral and molecular mass characteristics have been studied, and a comparative analysis with polyaniline has been carried out. The substituent introduced into the aniline aromatic ring significantly improves the solubility in typical organic solvents of a high molecular weight product. The morphology of the test compounds depends on the co-monomer ratio. As the content of the substituted aniline in the initial mixture increases, the morphology of the polymer changes from the inherent polyaniline fibrous microstructure to the globular one with irregular substituted polyaniline shapes and sizes. Electrochemical study of the samples revealed that the higher the oxidation potential, the wider the band gap (ranging from 2.00 to 2.15). The electrical conductivity decreases in proportion to the increase in the substituted aniline concentration of the initial co-monomer mixture and amounts to 12.5–35.7 × 106 nSm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jarjes, Z.; Samian, M.; AbGhani, S. Conductive polymers: Their preparations and catalyses on NADH oxidation at carbon cloth electrodes. Arab. J. Chem. 2015, 5, 726–731.

    Article  CAS  Google Scholar 

  2. Long, Y.; Li, M.; Gu, C.; Wan, M.; Duvail, J.; Liu, Z.; Fan, Z. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011, 36, 1415–1442.

    Article  CAS  Google Scholar 

  3. Salikhov, R.; Biglova, Y.; Mustafin, A. New organic polymers for solar cells. In Emerging solar energy materials. ed. by Sadia Ameen. IntechOpen 2018, 83–104.

  4. Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta 2003, 475, 1–15.

    Article  CAS  Google Scholar 

  5. Stejskal, J.; Sapurina, I.; Trchova, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420–1481.

    Article  CAS  Google Scholar 

  6. Bhadra, S.; Khastgir, D.; Singha, N. K., Lee, J. H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783–810.

    Article  CAS  Google Scholar 

  7. Ćirić-MarjanoviĆ, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1–47.

    Article  CAS  Google Scholar 

  8. Vivekanandan, J.; Ponnusamy, V.; Mahudeswaran, A.; Vijayanand, P. Synthesis and characterization and conductivity study of polyaniline by chemical oxidative and electrochemical methods. Arch. Appl. Sci. Res 2011, 3, 147–153.

    CAS  Google Scholar 

  9. Verma, D. Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature. Sens. Actuat. B: Chem. 2008, 134, 373–376.

    Article  CAS  Google Scholar 

  10. Shakoor, A.; Rizvi, T.; Sulaiman, M.; Nasir, M.; Ishtiaq, M. Electronic properties of aniline doped with dodecylbenzenesulphonic acid (PANI-DBSA) and poly(methyl methacrylate) (PMMA) blends in the presence of hydroquinone. J. Mater. Sci.: Mater. Electron. 2010, 21, 603–607.

    CAS  Google Scholar 

  11. Im, S.; Han, M.; Cho, S.; Oh, S. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met. 2002, 126, 53–60.

    Article  Google Scholar 

  12. Liu, J.; Hu, X.; Wang, X.; Yao, J.; Sun, D.; Fan, Z.; Guo, M. Facile synthesis of hollow microspheres of polyaniline using poly(sodium 4-styrenesulfonic acid) as dopant. Polym. Int. 2014, 63, 722–726.

    Article  CAS  Google Scholar 

  13. Summers, G. Conducting polyaniline nanorods doped with aromatic carboxyl chain end functionalized polymers. Synth. Met. 2015, 209, 251–261.

    Article  CAS  Google Scholar 

  14. Kabomo, T.; Scurrell, M. The effects of ring substituents in aniline on the reactivity of PANI with hydrogen tetrachloroaurate and the dispersion of gold nanoparticles. Polym. Adv. Technol. 2016, 27, 759–764.

    Article  CAS  Google Scholar 

  15. Khamngoen, K.; Paradee, N.; Sirivat, A. Chemical oxidation polymerization and characterization of poly ortho-anisidine nanoparticles. J. Polym. Res. 2016, 23, 172.

    Article  CAS  Google Scholar 

  16. Liu, Y.; Li, S.; Yao, P.; Zhang, Q. Synthesis of organic soluble poly(substituted-aniline) from 2-methyl-6-ethylaniline tar. Int. J. Mod. Phys. B 2017, 31, 1744091.

    Article  CAS  Google Scholar 

  17. Barbero, C.; Salavagione, H.; Acevedo, D.; Grumelli, D.; Garay, F.; Planes, G.; Miras, M. Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines. Electrochim. Acta 2004, 49, 3671–3686.

    Article  CAS  Google Scholar 

  18. Waware, U. The spectral and morphological studies of the conductive polyaniline thin film derivatives by the in situ copolymerization. J. Mater. Sci-Mater. El. 2017, 28, 15178–15183.

    Article  CAS  Google Scholar 

  19. Thota, A.; Arukula, R.; Narayan, R.; Rao, C.; Raju, K. V. S. N. Energy storage and surface protection properties of dianiline co-polymers. RSC Adv. 2015, 5, 106523–106535.

    Article  CAS  Google Scholar 

  20. Tran, H.; D’Arcy, J.; Wang, Y.; Beltramo, P.; Strong, V.; Kaner, R. The oxidation of aniline to produce “polyaniline”: A process yielding many different nanoscale structures. J. Mater. Chem. 2011, 21, 3534–3550.

    Article  CAS  Google Scholar 

  21. Waware, U.; Summers, G.; Hamouda, A. M. S.; Rashid, M. Synthesis and characterization of polyaniline, poly(3-fluoroaniline), and poly(aniline-co-3-fluoroaniline) derivatives obtained by chemical oxidative polymerization methods. Polym. Plast. Technol. Eng. 2017, 57, 1–11.

    Google Scholar 

  22. Movahedifar, F.; Modarresi-Alam, A. The effect of initiators and oxidants on the morphology of poly[(±)-2-(sec-butyl) aniline] a chiral bulky substituted polyaniline derivative. Polym. Adv. Technol. 2016, 27, 131–139.

    Article  CAS  Google Scholar 

  23. Teasdale, P.; Spinks, G.; Kane-Maguire, L.; Wallace, G. Conductive electroactive polymers: Intelligent polymer systems. in Conductive electroactive polymers: Intelligent polymer systems, CRC, New York, 2008.

    Google Scholar 

  24. Ortega, E.; Armijo, F.; Jessop, I.; Del Valle, M. A.; Díaz, F. R. Chemical synthesis and characterization of polyaniline derivatives: Substituent effect on solubility and conductivity. J. Chil. Chem. Soc. 2013, 58, 1959–1962.

    Article  CAS  Google Scholar 

  25. Biglova, Yu.; Salikhov, R.; Abdrakhmanov, I.; Salikhov, T.; Safargalin, I.; Mustafin, A. Preparation and investigation of soluble functionalized polyanilines. Phys. Solid State 2017, 59, 1228–1233.

    Article  Google Scholar 

  26. Salavagione, H. Preparation and characterization of “clickable” polyaniline derivatives on graphene modified electrodes. J. Electroanal. Chem. 2016, 765, 118–125.

    Article  CAS  Google Scholar 

  27. Abdrakhmanov, I.; Mustafin, A.; Sharafutdinov, V. Claisen rearrangement in the series of aromatic amines, Gilem, Ufa, 2014.

    Google Scholar 

  28. Cope, A.; Hardy, E. The introduction of substituted vinyl groups. V. A rearrangement involving the migration of an allyl group in a three-carbon system. J. Am. Chem. Soc. 1940, 62, 441–444.

    Article  CAS  Google Scholar 

  29. Abdrakhmanov, I.; Sharafutdinov, V. M.; Tolstikov, G. A. Amino-Kleisen rearrangement as a method for the synthesis of C-cycloalkanilanilines. Bull. Russ. Acad. Sci.: Chem. 1982, 9, 2160.

    Google Scholar 

  30. Gvozdenović, M.; Jugović, B.; Stevanović, J.; Grgur, B. Electrochemical synthesis of electroconducting polymers. Hem. Ind. 2014, 68, 673–684.

    Article  Google Scholar 

  31. Aprano, G.; Leclerc, M.; Zotti, G. Steric and electronic effects in methyl and methoxy substituted polyanilines. J. Electroanal. Chem. 1993, 351, 145–158.

    Article  Google Scholar 

  32. Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Synthesis and characterization of polyaniline derivatives: Poly(2-alkoxyanilines) and poly(2,5-dialkoxyanilines). Chem. Mater. 1995, 7, 33–42.

    Article  Google Scholar 

  33. Wei, Y.; Focke, W.; Wnek, G.; Ray, A.; MacDiarmid, A. Synthesis and electrochemistry of alkyl ring-substituted polyanilines. J. Phys. Chem. 1989, 93, 495–499.

    Article  CAS  Google Scholar 

  34. Aymen, M. Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide. J. Phys. D: Appl. Phys. 2013, 46, 335103.

    Article  CAS  Google Scholar 

  35. Barbero, C.; Miras, M.; Haas, O.; Kötz, R. Direct in situ evidence for proton/anion exchange in polyaniline films by means of probe beam deflection. J. Electrochem. Soc. 1991, 138, 669–672.

    Article  CAS  Google Scholar 

  36. Lindfors, T.; Ivaska, A. pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 2002, 531, 43–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out within the framework of the state task program (No. AAAA-A19-119020890014-7). Electron microscopic studies were performed on the basis of the Center for Collective Use of Scientific Equipment of the Institute of Metal Superplasticity Problems, RAS “Structural and Physico-Mechanical Material Studies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Andriianova.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andriianova, A., Shigapova, A., Biglova, Y. et al. Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline. Chin J Polym Sci 37, 774–782 (2019). https://doi.org/10.1007/s10118-019-2261-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2261-9

Keywords

Navigation