Skip to main content

Advertisement

Log in

CO2-based Biodegradable Supramolecular Polymers with Well-tunable Adhesive Properties

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Supramolecular adhesives that enable debonding on-demand are of significant research interest for the development of adaptive and smart materials, yet, biodegrable supramolecular adhesives have been rarely exploited. Herein, telechelic, three-armed and four-armed CO2-based polyols with close molecular weights and various CO2 content (or carbonate unite content) have been synthesized via a zinc-cobalt double metal cyanide complex catalyzed ring-opening copolymerization of CO2 and propylene oxide, and further exploited as sustainable and biodegradable building blocks for supramolecular polymers (SMPs) with 2-ureido-4[1H]-pyrimidinone (UPy) motifs. Notably, the orthogonal modulation of the CO2 content and the topology of CO2-based polyols provide a unique opportunity to fine-tune the surface energy as well as the cohesive strength of the resulting CO2-based SMPs. Notably, a three-armed SMP with 44% CO2 (3UPy-CO2-44%) can well balance the trade-off between surface energy and cohesive strength, therefore bestowing a high adhesive strength of 7.5 and 9.7 MPa towards stainless steel and wood substrates respectively by testing the corresponding single lap joints. Moreover, the light-responsive adhesion property of 3UPy-CO2-44% has been demonstrated exemplarily by blending with a UV sensitizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118, 839–885.

    Article  CAS  PubMed  Google Scholar 

  3. Artz, J.; Müller, T. E.; Thenert, K.; Kleinekorte, J.; Meys, R.; Sternberg, A.; Bardow A.; Leitner, W. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 2018, 118, 434–504.

    Article  CAS  PubMed  Google Scholar 

  4. Zhao, Y. J.; Zhu, S. S.; Liao, C.; Wang, Y.; Lam, W. Y. Jacky; Zhou, X. P.; Wang, X. H.; Xie, X. L.; Tang, B. Z. Cobalt-mediated switchable catalysis for the one-pot synthesis of cyclic polymers. Angew. Chem. Int. Ed. 2021, 60, 16974–16979.

    Article  CAS  Google Scholar 

  5. Chen, X. S.; Chen, G. Q.; Tao, Y. H.; Wang, Y. Z.; Lu X. B.; Zhang L. Q.; Zhu, J.; Zhang, J.; Wang, X. H. Research progress in eco-polymers. Acta Polymerica Sinica (in Chinese) 2019, 50, 1068–1082.

    CAS  Google Scholar 

  6. Zhou, C. W.; Qin, Y. S.; Wang, X. H.; Wang, F. S. Steric hindrance ligand strategy to aluminum porphyrin catalyst for completely alternative copolymerization of CO2 and propylene oxide. Chinese J. Polym. Sci. 2018, 36, 252–260.

    Article  Google Scholar 

  7. Lu, X. B. Stereoregular CO2 copolymers: from amorphous to crystalline materials. Acta Polymerica Sinica (in Chinese) 2016, 1166–1178.

    Google Scholar 

  8. Huang, J.; Worch, J. C.; Dove, A. P.; Coulembier, O. Update and challenges in carbon dioxide-based polycarbonate synthesis. ChemSusChem 2020, 13, 469–487.

    Article  CAS  PubMed  Google Scholar 

  9. Li, Y.; Zhang, Y. Y.; Hu, L. F.; Zhang, X. H.; Du, B. Y.; Xu, J. T. Carbon dioxide-based copolymers with various architectures. Prog. Polym. Sci. 2018, 82, 120–157.

    Article  CAS  Google Scholar 

  10. Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 2015, 51, 6459–6479.

    Article  CAS  Google Scholar 

  11. Lu, X. B.; Darensbourg, D. J. Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem. Soc. Rev. 2012, 41, 1462–1484.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, S. S.; Zhao, Y. J.; Ni, M. L.; Xu, J.; Zhou, X. P.; Liao, Y. G.; Wang, Y.; Xie, X. L. One-step and metal-free synthesis of triblock quaterpolymers by concurrent and switchable polymerization. ACS Macro Lett. 2020, 9, 204–209.

    Article  CAS  Google Scholar 

  13. Qin, Y. S.; Sheng, X. F.; Liu, S. J.; Ren, G. J.; Wang, X. H.; Wang, F. S. Recent advances in carbon dioxide based copolymers. J. CO2 Util. 2015, 11, 3–9.

    Article  CAS  Google Scholar 

  14. Zhao, Y. J.; Wang, Y.; Zhou, X. P.; Xue, Z. G.; Wang, X. H.; Xie, X. L.; Poli, R. Oxygen-triggered switchable polymerization for the one-pot synthesis of CO2-based block copolymers from monomer mixtures. Angew. Chem. Int. Ed. 2019, 58, 14311–14318.

    Article  CAS  Google Scholar 

  15. Wang, Y.; Zhao, Y. J.; Ye, Y. S.; Peng, H. Y.; Zhou, X. P.; Xie, X. L.; Wang, X. H.; Wang, F. S. A one-step route to CO2-based block copolymers by simultaneous ROCOP of CO2/epoxides and RAFT polymerization of vinyl monomers. Angew. Chem. Int. Ed. 2018, 57, 3593–3597.

    Article  CAS  Google Scholar 

  16. Scharfenberg, M.; Hilf, J.; Frey, H. Functional polycarbonates from carbon dioxide and tailored epoxide monomers: degradable materials and their application potential. Adv. Funct. Mater. 2018, 28, 1704302.

    Article  Google Scholar 

  17. Yang, G. W.; Wu, G. P. High-efficiency construction of CO2-based healable thermoplastic elastomers via a tandem synthetic strategy. ACS Sustain. Chem. Eng. 2019, 7, 1372–1380.

    Article  CAS  Google Scholar 

  18. Stößer, T.; Li, C.; Unruangsri, J.; Saini, P. K.; Sablong, R. J.; Meier, M. A. R.; Williams, C. K.; Koning, C. Bio-derived polymers for coating applications: comparing poly(limonene carbonate) and poly(cyclohexadiene carbonate). Polym. Chem. 2017, 8, 6099–6105.

    Article  Google Scholar 

  19. Muthuraj, R.; Mekonnen, T. Carbon dioxide-derived poly(propylene carbonate) as a matrix for composites and nanocomposites: performances and applications. Macromol. Mater. Eng. 2018, 303, 1800366.

    Article  Google Scholar 

  20. Cui, X. H.; Jin, J.; Cui, J.; Zhao, G. Y.; Jiang, W. Preparation of chlorinated poly(propylene carbonate) and its distinguished properties. Chinese J. Polym. Sci. 2017, 35, 1086–1096.

    Article  CAS  Google Scholar 

  21. Zhang, J.; Zang, X.; Wen, H.; Dong, T.; Chai, J.; Li, Y.; Chen, B.; Zhao, J.; Dong, S.; Ma, J.; Yue, L.; Liu, Z.; Guo, X.; Cui, G.; Chen, L. Highvoltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 2017, 5, 4940–4948.

    Article  CAS  Google Scholar 

  22. Yue, H.; Li, J.; Wang, Q.; Li, C.; Zhang, J.; Li, Q.; Li, X.; Zhang H.; Yang, S. Sandwich-like poly(propylene carbonate)-based electrolyte for ambient-temperature solid-state lithium ion batteries. ACS Sustain. Chem. Eng. 2018, 6, 268–274.

    Article  CAS  Google Scholar 

  23. Commarieu, B.; Paolella, A.; Collin-Martin, S.; Gagnon, C.; Vijh, A.; Guerfi, A.; Zaghib, K. Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries. J. Power Sources 2019, 436, 226852.

    Article  CAS  Google Scholar 

  24. Gong, R. N.; Cao, H.; Zhang, H. M.; Qiao, L. J.; Wang, F. S.; Wang, X. H. Terminal hydrophilicity-induced dispersion of cationic waterborne polyurethane from CO2-Based polyol. Macromolecules 2020, 53, 6322–6330.

    Article  CAS  Google Scholar 

  25. Wang, J.; Zhang, M. H.; Miao, Y. Y.; Qiao, L. J.; Wang, X. H. A whole-procedure solvent-free route to CO2-based waterborne polyurethane by an elevated-temperature dispersing strategy. Green Chem. 2017, 19, 2194–2200.

    Article  CAS  Google Scholar 

  26. Alagi, P.; Ghorpade, R.; Choi, Y. J.; Patil, U.; Kim, I.; Baik, J. H.; Hong, S. C. Carbon dioxide-based polyols as sustainable feedstock of thermoplastic polyurethane for corrosion-resistant metal coating. ACS Sustain. Chem. Eng. 2017, 5, 3871–3881.

    Article  CAS  Google Scholar 

  27. Jang, J. H.; Ha, J. H.; Kim, I.; Baik, J. H.; Hong, S. C. Facile room-temperature preparation of flexible polyurethane foams from carbon dioxide based poly(ether carbonate) polyols with a reduced generation of acetaldehyde. ACS Omega 2019, 4, 7944–7952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, Z. H.; Huang, J. Q.; Sun, L. J.; Lei, D.; Cao, J.; Chen, S.; Shih, W. C.; Qing, F. L.; You, Z. W. PPC-based reactive hot melt polyurethane adhesive (RHMPA)-efficient glues for multiple types of substrates. Chinese J. Polym. Sci. 2018, 36, 58–64.

    Article  CAS  Google Scholar 

  29. Von der Assen, N.; Bardow, A. Life cycle assessment of polyols for polyurethane production using CO2 as feedstock: insights from an industrial case study. Green Chem 2014, 16, 3272–3280.

    Article  CAS  Google Scholar 

  30. Hofman, A. H.; van Hees, I. A.; Yang, J.; Kamperman, M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv. Mater. 2018, 30, 1704640.

    Article  Google Scholar 

  31. Shi, C. Y.; Zhang, Y. Q.; Tian, H.; Qu, D. H. Supramolecular adhesive materials from small-molecule self-assembly. SmartMat 2020, 1, e1012.

    Article  Google Scholar 

  32. Li, X.; Deng, Y.; Lai, J.; Zhao, G.; Dong, S. Tough, long-term, water-resistant, and underwater adhesion of low-molecular-weight supramolecular adhesives. J. Am. Chem. Soc. 2020, 142, 5371–5379.

    Article  CAS  PubMed  Google Scholar 

  33. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601–1604.

    Article  CAS  PubMed  Google Scholar 

  34. Folmer, B. J. B.; Sijbesma, R. P.; Versteegen, R. M.; van der Rijt, J. A. J.; Meijer, E. W. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv. Mater. 2000, 12, 874–878.

    Article  CAS  Google Scholar 

  35. Heinzmann, C.; Coulibaly, S.; Roulin, A.; Fiore, G. L.; Weder, C. Light-induced bonding and debonding with supramolecular adhesives. ACS Appl. Mater. Inter. 2014, 6, 4713–4719.

    Article  CAS  Google Scholar 

  36. Hohl, D. K.; Ferahian, A. C.; Montero de Espinosa, L.; Weder, C. Toughening of glassy supramolecular polymer networks. ACS Macro Lett. 2019, 8, 1484–1490.

    Article  CAS  Google Scholar 

  37. Zhu, D.; Ye, Q.; Lu, X.; Lu, Q. Self-healing polymers with PEG oligomer side chains based on multiple H-bonding and adhesion properties. Polym. Chem. 2015, 6, 5086–5092.

    Article  CAS  Google Scholar 

  38. Balkenende, D. W. R.; Winkler, S. M.; Li, Y.; Messersmith, P. B. Supramolecular cross-links in mussel-inspired tissue adhesives. ACS Macro Lett. 2020, 9, 1439–1445.

    Article  CAS  Google Scholar 

  39. Heinzmann, C.; Salz, U.; Moszner, N.; Fiore, G. L.; Weder, C. Supramolecular cross-links in poly(alkyl methacrylate) copolymers and their impact on the mechanical and reversible adhesive properties. ACS Appl. Mater. Interfaces 2015, 7, 13395–13404.

    Article  CAS  PubMed  Google Scholar 

  40. Heinzmann, C.; Lamparth, I.; Rist, K.; Moszner, N.; Fiore, G. L.; Weder, C. Supramolecular polymer networks made by solvent-free copolymerization of a liquid 2-ureido-4[1H]-pyrimidinone methacrylamide. Macromolecules 2015, 48, 8128–8136.

    Article  CAS  Google Scholar 

  41. von Fraunhofer, J. A. Adhesion and cohesion. Int. J. Dent. 2012, 951324.

    Google Scholar 

  42. Marshall, S. J.; Bayne, S. C.; Baier, R.; Tomsia, A. P.; Marshall, G. W. A review of adhesion science. Dent. Mater. 2010, 26, e11–e16.

    Article  PubMed  Google Scholar 

  43. Del Prado, A.; Hohl, D. K.; Balog, S.; de Espinosa, L. M.; Weder, C. Plant oil-based supramolecular polymer networks and composites for debonding-on-demand adhesives. ACS Appl. Polym. Mater. 2019, 1, 1399–1409.

    Article  CAS  Google Scholar 

  44. Liu, S. J.; Qin, Y. S.; Chen, X. S.; Wang X. H.; Wang, F. S. One-pot controllable synthesis of oligo(carbonate-ether) triol using a Zn-Co-DMC catalyst: the special role of trimesic acid as an initiationtransfer agent. Polym. Chem. 2014, 5, 6171–6179.

    Article  CAS  Google Scholar 

  45. Deacy, A. C.; Moreby, E.; Phanopoulos, A.; Williams, C. K. Co(III)/alkali-metal(I) heterodinuclear catalysts for the ring-opening copolymerization of CO2 and propylene oxide. J. Am. Chem. Soc. 2020, 142, 19150–19160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patil, N. G.; Boopathi, S. K.; Alagi, P.; Hadjichristidis, N.; Gnanou, Y. Feng, X. Carboxylate salts as ideal initiators for the metal-free copolymerization of CO2 with epoxides: synthesis of well-defined polycarbonates diols and polyols. Macromolecules 2019, 52, 2431–2438.

    Article  CAS  Google Scholar 

  47. Liu, S. J.; Miao, Y. Y.; Qiao, L. J.; Qin, Y. S.; Wang, X. H.; Chen, X. S.; Wang, F. S. Controllable synthesis of a narrow polydispersity CO2-based oligo(carbonate-ether) tetraol. Polym. Chem. 2015, 6, 7580–7585.

    Article  CAS  Google Scholar 

  48. Gao, Y. G.; Qin, Y. S.; Zhao, X. J.; Wang, F. S.; Wang, X. H. Selective synthesis of oligo(carbonate-ether) diols from copolymerization of CO2 and propylene oxide under zinc-cobalt double metal cyanide complex. J. Polym. Res. 2012, 19, 9878.

    Article  Google Scholar 

  49. Sun, X. K.; Zhang, X. H.; Wei, R. J.; Du, B. Y.; Wang, Q.; Fan, Z. Q.; Qi, G. R. Mechanistic insight into initiation and chain transfer reaction of CO2/cyclohexene oxide copolymerization catalyzed by zinc-cobalt double metal cyanide complex catalysts. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2924–2934.

    Article  CAS  Google Scholar 

  50. Van Beek, D. J. M.; Spiering, A. J. H.; Peters, G. W. M.; te Nijenhuis, K.; Sijbesma, R. P. Unidirectional dimerization and stacking of ureidopyrimidinone end groups in polycaprolactone supramolecular polymers. Macromolecules 2007, 40, 8464–8475.

    Article  CAS  Google Scholar 

  51. Salgueiro, W.; Marzocca, A.; Somoza, A.; Consolati, G.; Cerveny, S.; Quasso, F.; Goyanes, S. Dependence of the network structure of cured styrene butadiene rubber on the sulphur content. Polymer 2004, 45, 6037–6044.

    Article  CAS  Google Scholar 

  52. Bermejo, J. S.; Ugarte, C. M. Influence of cross-linking density on the glass transition and structure of chemically cross-linked PVA: a molecular dynamics study. Macromol. Theory Simul. 2009, 18, 317–327.

    Article  CAS  Google Scholar 

  53. Hao, J.; Weiss, R. A. Viscoelastic and mechanical behavior of hydrophobically modified hydrogels. Macromolecules 2011, 44, 9390–9398.

    Article  CAS  Google Scholar 

  54. Van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Monopolar surfaces. Adv. Colloid Interface Sci. 1987, 28, 35–64.

    Article  CAS  PubMed  Google Scholar 

  55. Faghihnejad, A.; Feldman, K. E.; Yu, J.; Tirrell, M. V.; Israelachvili, J. N.; Hawker, C. J.; Kramer, E. J.; Zeng, H. Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv. Funct. Mater. 2014, 24, 2322–2333.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21604027), National Key R&D Plan of China (No.2016YFB0302400) as well as the analytical and testing assistance from the Analysis and Testing Centre of HUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Wang or Xing-Ping Zhou.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XJ., Wen, YF., Wang, Y. et al. CO2-based Biodegradable Supramolecular Polymers with Well-tunable Adhesive Properties. Chin J Polym Sci 40, 47–55 (2022). https://doi.org/10.1007/s10118-021-2641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2641-9

Keywords

Navigation