Skip to main content

Advertisement

Log in

Analytical Framework for a Risk-based Estimation of Climate Change Effects on Mine Site Runoff Water Quality

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A conceptual analytical framework was developed for the risk-based estimation of climate change effects on mine waste runoff water quality. The modeling approach incorporates temporal variability in both precipitation and temperature using trend analyses from historical datasets and the resulting effects on water balances and geochemical weathering rates. A case-study method was used to develop and present the model for regions near the city of Yellowknife, Northwest Territories, Canada. Time-resolved relative precipitation and weathering factors can be calculated using climate data and site-specific estimates regarding mine waste properties. Interpretation of these factors allows an assessment of when the period of highest analyte concentrations are expected to occur under a given risk scenario over a modeling timeframe, whether low precipitation or warming effects are more important in determining water quality issues, and the relative magnitudes of water quality under differing risk scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahonen L, Tuovinen OH (1992) Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures. Appl Environ Microbiol 58:600–606

    Google Scholar 

  • Arora VK (2002) The use of the aridity index to assess climate change effect on annual runoff. J Hydrol 265:164–177

    Article  Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Nat Acad Sci USA 96:3404–3411

    Article  Google Scholar 

  • Bird G, Boon J, Stone T (1986) Silica transport during steam injection into oil sands. I. Dissolution and precipitation kinetics of quartz: new results and review of existing data. Chem Geol 54:69–80

    Article  Google Scholar 

  • Brady PV, Carroll SA (1994) Direct effects of CO2 and temperature on silicate weathering: possible implications for climate control. Geochim Cosmochim Acta 58:1853–1856

    Article  Google Scholar 

  • Dalai TK, Krishnaswami S, Sarin MM (2002) Major ion chemistry in the headwaters of the Yamuna river system: chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim Cosmochim Acta 66(19):3397–3416

    Article  Google Scholar 

  • Drever JL (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Elberling B (2005) Temperature and oxygen control on pyrite oxidation in frozen mine tailings. Cold Reg Sci Technol 41:121–133

    Article  Google Scholar 

  • Faybishenko B (2007) Climatic forecasting of net infiltration at Yucca Mountain using analogue meteorological data. Vadose Zone J 6:77–92

    Article  Google Scholar 

  • Frey-Buness F, Heimann D, Sausen R (1995) A statistical-dynamical downscaling procedure for global climate simulations. Theor Appl Climatol 50:117–131

    Article  Google Scholar 

  • Frostad S, Klein B, Lawrence RW (2002) Evaluation of laboratory kinetic test methods for measuring rates of weathering. Mine Water Environ 21:83–192

    Article  Google Scholar 

  • Gammons C, Metesh J, Snyder D (2006) A survey of the geochemistry of flooded mine shaft water in Butte, Montana. Mine Water Environ 25:100–107

    Article  Google Scholar 

  • Helgeson HC, Murphy WM, Aagaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim Cosmochim Acta 48:2405–2432

    Article  Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Climate 16:206–223

    Article  Google Scholar 

  • Knauss KG, Wolery TJ (1988) The dissolution kinetics of quartz as a function of pH and time at 70°C. Geochim Cosmochim Acta 52:43–53

    Article  Google Scholar 

  • Kump LR, Brantley SL, Arthur MA (2000) Chemical weathering, atmospheric CO2, and climate. Ann Rev Earth Planet Sci 28:611–667

    Article  Google Scholar 

  • Lefebvre R, Hockley D, Smolensky J, Gelinas P (2001a) Multiphase transfer processes in waste rock piles producing acid mine drainage. 1: conceptual model and system characterization. J Contam Hydrol 52:137–164

    Article  Google Scholar 

  • Lefebvre R, Hockley D, Smolensky J, Lamontagne A (2001b) Multiphase transfer processes in waste rock piles producing acid mine drainage. 2: applications of numerical simulation. J Contam Hydrol 52:165–186

    Article  Google Scholar 

  • Lengke MF, Tempel RN (2001) Kinetic rates of amorphous As2S3 oxidation at 25 to 40°C and initial pH of 7.3 to 9.4. Geochim Cosmochim Acta 65:2241–2255

    Article  Google Scholar 

  • Lengke MF, Tempel RN (2003) Natural realgar and amorphous AsS oxidation kinetics. Geochim Cosmochim Acta 67:859–871

    Article  Google Scholar 

  • Lowson RT (1982) Aqueous oxidation of pyrite by molecular oxygen. Chem Rev 82:461–497

    Article  Google Scholar 

  • McKibben MA, Barnes HL (1986) Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim Cosmochim Acta 50:509–1520

    Article  Google Scholar 

  • Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull Am Meteorol Soc 81:27–436

    Google Scholar 

  • MEND (2006) Update on cold temperature effects on geochemical weathering: MEND report 1.61.6. Mine Environment Neutral Drainage Program, Ottawa

    Google Scholar 

  • Mills TC (2006) Modelling current trends in Northern Hemisphere temperatures. Int J Climatol 26:867–884

    Article  Google Scholar 

  • Morin KA, Hutt NM (1997) Environmental geochemistry of minesite drainage: practical theory and case studies. MDAG Publishing, Vancouver

    Google Scholar 

  • Morin KA, Hutt NM (2001) Prediction of minesite-drainage chemistry through closure using operational monitoring data. J Geochem Explor 73:123–130

    Article  Google Scholar 

  • Moulton KL, Berner RA (1998) Quantification of the effect of plants on weathering: studies in Iceland. Geology 26:895–898

    Article  Google Scholar 

  • Nicholson RV, Scharer R (1994) Laboratory studies of pyrrhotite oxidation kinetics. Am Chem Soc Symp Ser 550:14–30

    Google Scholar 

  • Nicholson RV, Gillham RW, Reardon EJ (1988) Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics. Geochim Cosmochim Acta 52:1077–1085

    Article  Google Scholar 

  • Paktunc AD (1999) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ Geol 39:103–112

    Article  Google Scholar 

  • Puura E, D’Alessandro M (2005) A classification system for environmental pressures related to mine water discharges. Mine Water Environ 24:43–52

    Article  Google Scholar 

  • Riebe CS, Kirchner JW, Finkel RC (2004) Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth Planet Sci Lett 224:547–562

    Article  Google Scholar 

  • Rimstidt J, Barnes H (1980) The kinetics of silica-water reactions. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  • Rimstidt J, Chermak J, Gagen P (1994) Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In: Alpers CN, Blowes DW (eds) Environmental geochemistry of sulfide oxidation. American Chemical Society, Washington, pp 2–13

    Google Scholar 

  • Rosenzweig C, Iglesias A, Yang X, Epstein PR, Chivian E (2001) Climate change and extreme weather events: Implications for food production, plant diseases, and pests. Global Change Hum Health 2:90–104

    Article  Google Scholar 

  • Rouse WR, Douglas MS, Hecky RE, Hershey AE, Kling GW, Lesack L (1997) Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrol Proc 11:873–902

    Article  Google Scholar 

  • Salm T, Maatta A, Anttila P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann-Kendall test and Sen’s slope estimates. Finnish Meteorological Institute, Helsinki

    Google Scholar 

  • Scanlon BR, Tyler SW, Wierenga PJ (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev Geophys 35:461–490

    Article  Google Scholar 

  • Schnoor JL (1990) Rates of reaction of galena, sphalerite, chalcopyrite, and arsenopyrite with Fe(III) in acidic solutions. In: Stumm W (ed) Aquatic chemical kinetics. Wiley, Chichester, pp 475–504

    Google Scholar 

  • Simunek J, Jarvis NJ, van Genuchten MT, Gardenas A (2003) Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrol 272:14–35

    Article  Google Scholar 

  • Stromberg B, Banwart S (1999) Weathering kinetics of waste rock from the Aitik copper mine, Sweden: scale dependent rate factors and pH controls in large column experiments. J Contam Hydrol 39:59–89

    Article  Google Scholar 

  • Vincent LA, Gullett D (1999) Canadian historical and homogeneous temperature datasets for climate change analyses. Int J Climatol 19:1375–1388

    Article  Google Scholar 

  • von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Climate 6:1161–1171

    Article  Google Scholar 

  • Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32(L23822), doi:10.1029/2005GL024379

  • Wanielista MP, Kersten R, Ealgin R (1997) Hydrology: water quantity and quality control. Wiley, New York

    Google Scholar 

  • Webb G, Tyler SW, Collord J, Van Zyl D, Halihan T, Turrentine J, Fenstemaker T (2008) Field-scale analysis of flow mechanisms in highly heterogeneous mining media. Vadose Zone J 7:899–908

    Article  Google Scholar 

  • White AF, Blum AE (1995) Effects of climate on chemical weathering in watersheds. Geochim Cosmochim Acta 59:1729–1747

    Article  Google Scholar 

  • White AF, Blum AE, Bullen TD, Vivit DV, Schulz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63:3277–3291

    Article  Google Scholar 

  • Wiersma C, Rimstidt J (1984) Rates of reaction of pyrite and marcasite with ferric iron at pH 2. Geochim Cosmochim Acta 48:5–92

    Article  Google Scholar 

  • Wolkersdorfer C, Bowell R (2004) Contemporary reviews of mine water studies in Europe: part 1. Mine Water Environ 23:162–182

    Article  Google Scholar 

  • Wolkersdorfer C, Bowell R (2005a) Contemporary reviews of mine water studies in Europe: part 2. Mine Water Environ 24:2–37

    Article  Google Scholar 

  • Wolkersdorfer C, Bowell R (2005b) Contemporary reviews of mine water studies in Europe: part 3. Mine Water Environ 24:58–76

    Article  Google Scholar 

  • Yu Y, Zhu Y, Gao Z, Gammons CH, Li D (2007) Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8–12.6 and 15–45°C. Environ Sci Technol 41:6460–6464

    Article  Google Scholar 

Download references

Acknowledgments

Sierra Rayne thanks the Natural Sciences and Engineering Research Council (NSERC) of Canada for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sierra Rayne.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 952 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rayne, S., Forest, K. & Friesen, K.J. Analytical Framework for a Risk-based Estimation of Climate Change Effects on Mine Site Runoff Water Quality. Mine Water Environ 28, 124–135 (2009). https://doi.org/10.1007/s10230-009-0070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-009-0070-z

Keywords

Navigation