Skip to main content
Log in

Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The complex mechanical properties of skin have been the subject of much study in recent years. Several experimental methods developed to measure the mechanical properties of skin in vivo, such as suction or torsion, are unable to measure skin’s anisotropic characteristics. An experiment characterising the mechanical properties of in vivo human skin using a novel force-sensitive micro-robot is presented. The micro-robot applied in-plane deformations to the anterior forearm and the posterior upper arm. The behaviour of the skin in each area is highly nonlinear, anisotropic, and viscoelastic. The response of the upper arm skin is very dependent on the orientation of the arm. A finite element model consisting of an Ogden strain energy function and quasi-linear viscoelasticity was developed to simulate the experiments. An orthogonal initial stress field, representing the in vivo skin tension, was used as an additional model parameter. The model simulated the experiments accurately with an error-of-fit of 17.5% for the anterior lower forearm area, 6.5% for the anterior upper forearm and 9.3% for the posterior upper arm. The maximum in vivo tension in each area determined by the model was 6.2 Nm−1 in the anterior lower forearm, 11.4 Nm−1 in anterior upper forearm and 5.6 Nm−1 in the posterior upper arm. The results also show that a finite element model with a neo-Hookean strain energy function cannot simulate the experiments with the same accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F A , F B , F C :

Forces measured at each force transducer

R X , R Y , R Z :

Reaction force components at probe tip

w :

Distance from centroid to apex of triangle formed by the transducers

h :

Perpendicular distance between probe tip and base of rigid frame

W :

Strain energy

μ, α:

Ogden function material parameters

λ1, λ2, λ3 :

Principal stretches

p :

Lagrange multiplier representing hydrostatic pressure

J :

Volume ratio

C 10 :

Neo-Hookean function material parameter

T e :

Elastic stress component

g R :

Reduced relaxation function

\({\bar{{g}}_1^{\rm P} ,\tau_1^{\rm G}}\) :

Prony series parameters

σ X , σ Y :

Initial pre-stress in X and Y directions

\({R_i^{model}}\) :

Reaction force at probe tip calculated from model

\({R_i^{\rm exp}}\) :

Reaction force at probe tip measured in experiment

References

  • Alexander H, Cook TH (1977) Accounting for natural tension in the mechanical testing of human skin. J Investig Dermatol 69: 310–314

    Article  Google Scholar 

  • Batisse D, Bazin R, Baldeweck T, Querleux B, Lévêque J-L (2002) Influence of age on the wrinkling capacities of skin. Skin Res Technol 8: 148–154

    Article  Google Scholar 

  • Bellamy K, Limbert G, Waters MG, Middleton J (2003) An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects. Biomaterials 24: 5061–5066

    Article  Google Scholar 

  • Bergstrom JS, Boyce MC (2001) Constitutive modeling of the time-dependent and cyclic loading of elastomers and application to soft biological tissues. Mech Mater 33: 523–530

    Article  Google Scholar 

  • Bischoff JE (2006) Reduced parameter formulation for incorporating fiber level viscoelasticity into tissue level biomechanical models. Annl Biomed Eng 34: 1164–1172

    Article  MathSciNet  Google Scholar 

  • Bischoff JE, Arruda EM, Grosh K (2000) Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model. J Biomech 33: 645–652

    Article  Google Scholar 

  • Cacou C, Muir IFK (1995) Effects of plane mechanical forces in wound healing in humans. J Roy Coll Surg Edin 40: 38–41

    Google Scholar 

  • Cavicchi A, Gambarotta L, Massabò R (2009) Computational modeling of reconstructive surgery: the effects of the natural tension on skin wrinkling. Finite Elements Analys Design 45: 519–529

    Article  Google Scholar 

  • Cerda E (2005) Mechanics of scars. J Biomech 38: 1598–1603

    Article  Google Scholar 

  • Criscione JC (2003) Rivlin’s representation formula is Ill-conceived for the determination of response functions via biaxial testing. J Elastic 70: 129–147

    Article  MATH  MathSciNet  Google Scholar 

  • Daly CH (1982) Biomechanical properties of dermis. J Investig Dermatol 79: 17s–20s

    Article  Google Scholar 

  • de Jong LAM (1995) Pre-tension and anisotropy in skin: modelling and experiments. Dissertation, Eindhoven University of Technology

  • Delalleau A, Josse G, Lagarde J-M, Zahouani H, Bergheau J-M (2006) Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. J Biomech 39: 1603–1610

    Article  Google Scholar 

  • Delalleau A, Josse G, Lagarde JM, Zahouani H, Bergheau JM (2008) A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Res Technol 14: 152–164

    Article  Google Scholar 

  • Diridollou S, Patat F, Gens F, Vaillant L, Black D, Lagarde JM, Gall Y, Berson M (2000) In vivo model of the mechanical properties of the human skin under suction. Skin Res Technol 6: 214–221

    Article  Google Scholar 

  • Evans SL (2009) On the implementation of a wrinkling, hyperelastic membrane model for skin and other materials. Comp Method Biomech Biomed Eng 12: 319–332

    Article  Google Scholar 

  • Evans SL, Holt CA (2009) Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modelling. J Strain Analys Eng Design 44: 337–345

    Article  Google Scholar 

  • Flynn C, McCormack BAO (2008a) Finite element modelling of forearm skin wrinkling. Skin Res Technol 14: 261–269

    Article  Google Scholar 

  • Flynn C, McCormack BAO (2008b) A simplified model of scar contraction. J Biomech 41: 1582–1589

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York

    Google Scholar 

  • Gunner CW, Hutton WC, Burlin TE (1979) The mechanical properties of skin in vivo—a portable hand-held extensometer. Brit J Dermatol 100: 161–163

    Article  Google Scholar 

  • Har-Shai Y, Bodner SR, Egozy-Golan D, Lindenbaum ES, Ben-Izhak O, Mitz V, Hirshowitz B (1996) Mechanical properties and microstructure of the superficial musculoaponeurotic system. Plast Reconstr Surg 98: 59–70

    Article  Google Scholar 

  • Hendriks FM, Brokken D, Oomens CWJ, Bader DL, Baaijens FPT (2006) The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments. Med Eng Phys 28: 259–266

    Article  Google Scholar 

  • Jacquet E, Josse G, Khatyr F, Garcin C (2008) A new experimental method for measuring skin’s natural tension. Skin Res Technol 14: 1–7

    Google Scholar 

  • Khatyr F, Imberdis C, Varchon D, Lagarde J-M, Josse G (2006) Measurement of the mechanical properties of the skin using the suction test. Skin Res Technol 12: 24–31

    Article  Google Scholar 

  • Kvistedal YA, Nielsen PMF (2009) Estimating material parameters of human skin in vivo. Biomech Model Mech 8: 1–8

    Article  Google Scholar 

  • Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16: 1–12

    Article  Google Scholar 

  • Lanir Y, Fung YC (1974) Two-dimensional mechanical properties of rabbit skin–II. Experimental results. J Biomech 7: 171–174

    Article  Google Scholar 

  • Lott-Crumpler DA, Chaudhry HR (2001) Optimal patterns for suturing wounds of complex shapes to foster healing. J Biomech 34: 51–58

    Article  Google Scholar 

  • Magnenat-Thalmann N, Kalra P, Leveque JL, Bazin R, Batisse D, Querleux B (2002) A computational skin model: fold and wrinkle formation. IEEE Trans Info Technol Biomed 6: 317–323

    Article  Google Scholar 

  • MerckSource(2007) Langer lines. In: Dorlands Medical Dictionary. Elsevier. Available via http://mercksource.org/pp/us/cns/cns_hl_dorlands_split.jsp?pg=/ppdocs/us/common/dorlands/dorland/five/000060422.htm. Accessed 29 Oct 2009

  • Ogden RW, Saccomandi G, Sgura I (2004) Fitting hyperelastic models to experimental data. Computational Mechanics 34: 484–502

    Article  MATH  Google Scholar 

  • Pailler-Mattei C, Bec S, Zahouani H (2008) In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med Eng Phys 30: 599–606

    Article  Google Scholar 

  • Reihsner R, Balogh B, Menzel EJ (1995) Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. Med Eng Phys 17: 304–313

    Article  Google Scholar 

  • Rubin MB, Bodner SR, Binur NS (1998) An elastic-viscoplastic model for excised facial tissues. J Biomech Eng 120: 686–689

    Article  Google Scholar 

  • Schneider D (1982) Viscoelasticity and tearing strength of the human skin. Dissertation, University of California

  • Shergold OA, Fleck NA (2004) Mechanisms of deep penetration of soft solids, with application to the injection and wounding of skin. Proceedings of the Royal Society A: Mathematical. Phys Eng Sci 460: 3037–3058

    MATH  Google Scholar 

  • Shoemaker PA, Schneider D, Lee MC, Fung YC (1986) A constitutive model for two-dimensional soft tissues and its application to experimental data. J Biomech 19: 695–702

    Article  Google Scholar 

  • Silver FH, Freeman JW, DeVore D (2001) Viscoelastic properties of human skin and processed dermis. Skin Res Technol 7: 18–23

    Article  Google Scholar 

  • Wan Abas WAB (1994) Biaxial tension test of human skin in vivo. Bio-Med Mater Eng 4: 473–486

    Google Scholar 

  • Wilkes GL, Brown IA, Wildnauer RH (1973) The biomechanical properties of skin. Crc Cr Rev Biom Eng 1: 453–495

    Google Scholar 

  • Zahouani H, Pailler-Mattei C, Sohm B, Vargiolu R, Cenizo V, Debret R (2009) Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Res Technol 15: 68–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac Flynn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, C., Taberner, A. & Nielsen, P. Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis. Biomech Model Mechanobiol 10, 27–38 (2011). https://doi.org/10.1007/s10237-010-0216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0216-8

Keywords

Navigation