Skip to main content
Log in

An integrated electromechanical-growth heart model for simulating cardiac therapies

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

An emerging class of models has been developed in recent years to predict cardiac growth and remodeling (G&R). We recently developed a cardiac G&R constitutive model that predicts remodeling in response to elevated hemodynamics loading, and a subsequent reversal of the remodeling process when the loading is reduced. Here, we describe the integration of this G&R model to an existing strongly coupled electromechanical model of the heart. A separation of timescale between growth deformation and elastic deformation was invoked in this integrated electromechanical-growth heart model. To test our model, we applied the G&R scheme to simulate the effects of myocardial infarction in a realistic left ventricular (LV) geometry using the finite element method. We also simulate the effects of a novel therapy that is based on alteration of the infarct mechanical properties. We show that our proposed model is able to predict key features that are consistent with experiments. Specifically, we show that the presence of a non-contractile infarct leads to a dilation of the left ventricle that results in a rightward shift of the pressure volume loop. Our model also predicts that G&R is attenuated by a reduction in LV dilation when the infarct stiffness is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arts T, Lumens J, Kroon W, Delhaas T (2012) Control of whole heart geometry by intramyocardial mechano-feedback: a model study. PLoS Comput Biol 8(2):e1002369

    Article  MathSciNet  Google Scholar 

  • Ashikaga H, Mickelsen SR, Ennis DB, Rodriguez I, Kellman P, Wen H, McVeigh ER (2005) Electromechanical analysis of infarct border zone in chronic myocardial infarction. Am J Physiol Heart Circ Physiol 289:H1099–H1105

    Article  Google Scholar 

  • Athanasuleas CL, Buckberg GD, Stanley AWH, Siler W, Dor V, Di Donato M, Menicanti L, Almeida de Oliveira S, Beyersdorf F, Kron IL, Suma H, Kouchoukos NT, Moore W, McCarthy PM, Oz MC, Fontan F, Scott ML, Accola Ka (2004) Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J Am Coll Cardiol 44(7):1439–1445

    Article  Google Scholar 

  • Berberoğlu E, Solmaz HO, Göktepe S (2014) Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions. Eur J Mech A Solids 48:1–14

    MathSciNet  Google Scholar 

  • Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35(3):569–582

    Article  Google Scholar 

  • Fomovsky GM, Clark SA, Parker KM, Ailawadi G, Holmes JW (2012) Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ Heart Fail 5(4):515–522

    Article  Google Scholar 

  • Fomovsky GM, MacAdangdang JR, Ailawadi G, Holmes JW (2011) Model-based design of mechanical therapies for myocardial infarction. J Cardiovasc Transl Res 4:82–91

    Article  Google Scholar 

  • Genet M, Lee LC, Nguyen R, Haraldsson H, Acevedo-Bolton G, Zhang Z, Ge L, Ordovas K, Kozerke S, Guccione JM (2014) Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J Appl Physiol 117:142–152

    Article  Google Scholar 

  • Genet M, Rausch MK, Lee LC, Choy S, Zhao X, Kassab GS, Kozerke S, Guccione JM, Kuhl E (2015) Heterogeneous growth-induced prestrain in the heart. J Biomech 48(10):2080–2089

    Article  Google Scholar 

  • Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown PP, Schocken DD (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86(2):426–430

    Article  Google Scholar 

  • Göktepe S, Abilez OJ, Kuhl E (2010a) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 58(10):1661–1680

    Article  MathSciNet  MATH  Google Scholar 

  • Göktepe S, Abilez OJ, Parker KK, Kuhl E (2010b) A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol 265(3):433–442

    Article  Google Scholar 

  • Guccione JM, McCulloch AD, Waldman LK (1991) Passive material properties of intact ventricular myocardium determined from a cylindrical model. J Biomech Eng 113(1):42–55

    Article  Google Scholar 

  • Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, Pasque MK (2001) Mechanism underlying mechanical dysfunction in the border zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 71(2):654–662

    Article  Google Scholar 

  • Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PWF, Woo YJ (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123:933–944

    Article  Google Scholar 

  • Holmes JW (2004) Candidate mechanical stimuli for hypertrophy during volume overload. J Appl Physiol 97:1453–1460 (May 2004)

    Article  Google Scholar 

  • Holmes JW, Borg TK, Covell JW (2005) Structure and mechanics of healing myocardial infarcts. Annu Rev Biomed Eng 7:223– 253

    Article  Google Scholar 

  • Hoshikawa E, Matsumura Y, Kubo T, Okawa M, Yamasaki N, Kitaoka H, Furuno T, Takata J, Doi YL (2011) Effect of left ventricular reverse remodeling on long-term prognosis after therapy with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers and \(\beta \) blockers in patients with idiopathic dilated cardiomyopathy. Am J Cardiol 107(7):1065–1070

    Article  Google Scholar 

  • Hu Y, Gurev V, Constantino J, Trayanova N (2014) Optimizing cardiac resynchronization therapy to minimize ATP consumption heterogeneity throughout the left ventricle: a simulation analysis using a canine heart failure model. Heart Rhythm 11:1063–1069

    Article  Google Scholar 

  • Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JH, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107:11507–11512

    Article  Google Scholar 

  • Jackson BM, Gorman JH, Moainie SL, Guy TS, Narula N, Narula J, John-Sutton MG, Edmunds LH, Gorman RC (2002) Extension of borderzone myocardium in postinfarction dilated cardiomyopathy. J Am Coll Cardiol 40(6):1160–1167 discussion 1168–71

    Article  Google Scholar 

  • Jeremy RW, Allman KC, Bautovitch G, Harris PJ (1989) Patterns of left ventricular dilation during the six months after myocardial infarction. J Am Coll Cardiol 13(2):304–310

    Article  Google Scholar 

  • Kerckhoffs RCP, Lumens J, Vernooy K, Omens JH, Mulligan LJ, Delhaas T, Arts T, McCulloch AD, Prinzen FW (2008) Cardiac resynchronization: insight from experimental and computational models. Prog Biophys Mol Biol 97(2–3):543–561

    Article  Google Scholar 

  • Kerckhoffs RCP, Omens JH, McCulloch AD (2012a) Mechanical discoordination increases continuously after the onset of left bundle branch block despite constant electrical dyssynchrony in a computational model of cardiac electromechanics and growth. Europace 14:v65–v72

    Article  Google Scholar 

  • Kerckhoffs RCP, Omens J, McCulloch AD (2012b) A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech Res Commun 42:40–50

    Article  Google Scholar 

  • Klepach D, Lee LC, Wenk JF, Ratcliffe MB, Zohdi TI, Navia JA, Kassab GS, Kuhl E, Guccione JM (2012) Growth and remodeling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration. Mech Res Commun 42:134–141

    Article  Google Scholar 

  • Kramer CM, Lima JA, Reichek N, Ferrari VA, Llaneras MR, Palmon LC, Yeh IT, Tallant B, Axel L (1993) Regional differences in function within noninfarcted myocardium during left ventricular remodeling. Circulation 88:1279–1288

    Article  Google Scholar 

  • Kramer CM, Rogers WJ, Park CS, Seibel PS, Shaffer a, Theobald TM, Reichek N, Onodera T, Gerdes aM (1998) Regional myocyte hypertrophy parallels regional myocardial dysfunction during post-infarct remodeling. J Mol Cell Cardiol 30(9):1773–1778

    Article  Google Scholar 

  • Kroon W, Delhaas T, Arts T, Bovendeerd P (2009) Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech Model Mechanobiol 8(4):301–309

    Article  Google Scholar 

  • Lee LC, Wenk JF, Zhong L, Klepach D, Zhang Z, Ge L, Ratcliffe MB, Zohdi TI, Hsu E, Navia JL, Kassab GS, Guccione JM (2013a) Analysis of patient-specific surgical ventricular restoration—importance of an ellipsoidal left ventricular geometry for diastolic and systolic function. J Appl Physiol 115:136–144

    Article  Google Scholar 

  • Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, Hinson A, Gorman JH, Gorman RC, Guccione JM (2013b) Algisyl-LVR with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol 168:2022–2028

    Article  Google Scholar 

  • Lee LC, Ge L, Zhang Z, Pease M, Nikolic SD, Mishra R, Ratcliffe MB, Guccione JM (2014a) Patient-specific finite element modeling of the Cardiokinetix Parachute device: effects on left ventricular wall stress and function. Med Biol Eng Comput 52:557–566

    Article  Google Scholar 

  • Lee LC, Wall ST, Genet M, Hinson A, Guccione JM (2014b) Bioinjection treatment: effects of post-injection residual stress on left ventricular wall stress. J Biomech 47(12):3115–3119

    Article  Google Scholar 

  • Lee LC, Genet M, Dang AB, Ge L, Guccione JM, Ratcliffe MB (2014c) Applications of computational modeling in cardiac surgery. J Card Surg 29:293–302

    Article  Google Scholar 

  • Lee LC, Genet M, Acevedo-Bolton G, Ordovas K, Guccione JM, Kuhl E (2015) A computational model that predicts reverse growth in response to mechanical unloading. Biomech Model Mechanobiol 14(2):217–229

    Article  Google Scholar 

  • Mazhari R, Omens JH, Covell JW, McCulloch aD (2000) Structural basis of regional dysfunction in acutely ischemic myocardium. Cardiovasc Res 47(2):284–293

    Article  Google Scholar 

  • McCall FC, Telukuntla KS, Karantalis V, Suncion VY, Heldman AW, Mushtaq M, Williams AR, Hare JM (2012) Myocardial infarction and intramyocardial injection models in swine. Nat Protoc 7(8):1479–1496

    Article  Google Scholar 

  • Mojsejenko D, McGarvey JR, Dorsey SM, Gorman JH, Burdick JA, Pilla JJ, Gorman RC, Wenk JF (2014) Estimating passive mechanical properties in a myocardial infarction using MRI and finite element simulations. Biomech Model Mechanobiol 14(3):633–647

    Article  Google Scholar 

  • Morita M, Eckert CE, Matsuzaki K, Noma M, Ryan LP, Burdick JA, Jackson BM, Gorman JH, Sacks MS, Gorman RC (2011) Modification of infarct material properties limits adverse ventricular remodeling. Ann Thorac Surg 92(2):617–624

    Article  Google Scholar 

  • Mukherjee R, Zavadzkas JA, Saunders SM, McLean JE, Jeffords LB, Beck C, Stroud RE, Leone AM, Koval CN, Rivers WT, Basu S, Sheehy A, Michal G, Spinale FG (2008) Targeted myocardial microinjections of a biocomposite material reduces infarct expansion in pigs. Ann Thorac Surg 86:1268–1276

    Article  Google Scholar 

  • Niederer SA, Smith NP (2012) At the heart of computational modelling. J Physiol 590:1331–1338

    Article  Google Scholar 

  • Nikolic SD, Khairkhahan A, Ryu M, Champsaur G, Breznock E, Dae M (2009) Percutaneous implantation of an intraventricular device for the treatment of heart failure: experimental results and proof of concept. J Card Fail 15:790–797

    Article  Google Scholar 

  • Omens JH, Rodriguez EK, McCulloch AD (1996) Transmural changes in stress-free myocyte morphology during pressure overload hypertrophy in the rat. J Mol Cell Cardiol 28:1975–1983

    Article  Google Scholar 

  • Pinto JMB, Boyden Pa (1999) Electrical remodeling in ischemia and infarction. Cardiovasc Res 42(2):284–297

    Article  Google Scholar 

  • Rice JJ, Wang F, Bers DM, de Tombe PP (2008) Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations. Biophys J 95(5):2368–2390

    Article  Google Scholar 

  • Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467

    Article  Google Scholar 

  • Rutz AK, Ryf S, Plein S, Boesiger P, Kozerke S (2008) Accelerated whole-heart 3D CSPAMM for myocardial motion quantification. Magn Reson Med 59(4):755–763

    Article  Google Scholar 

  • Sabbah H, Wang M, Jiang A, IIsar I, Sabbah M, Helgerson S, Peterson R, Tarazona N, Lee R (2009) Circumferential mid-ventricular intramyocardial injections of alginate hydrogel improve left ventricular function and prevent progressive remodeling in dogs with chronic heart failure. Circulation 120:S912

    Google Scholar 

  • Shimkunas R, Makwana O, Spaulding K, Bazargan M, Khazalpour M, Takaba K, Soleimani M, Myagmar B-E, Lovett DH, Simpson PC, Ratcliffe MB, Baker AJ (2014) Myofilament dysfunction contributes to impaired myocardial contraction in the infarct border zone. AJP Heart Circ Physiol 307:H1150–H1158

    Article  Google Scholar 

  • Soleimanifard S, Abd-Elmoniem KZ, Sasano T, Agarwal HK, Abraham MR, Abraham TP, Prince JL (2012) Three-dimensional regional strain analysis in porcine myocardial infarction: a 3T magnetic resonance tagging study. J Cardiovasc Magn Reson 14(1):85

    Article  Google Scholar 

  • Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24(3):339–347

    Article  Google Scholar 

  • Sundnes J, Wall ST, Osnes H, Thorvaldsen T, McCulloch AD (2014) Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations. Comput Methods Biomech Biomed Eng 17(6):604–615

    Article  Google Scholar 

  • Sutton M, Sharpe N (2000) Clinical cardiology: new frontiers left ventricular remodeling after myocardial infarction pathophysiology and therapy. Circulation 101:2981–2988

    Article  Google Scholar 

  • Wall ST, Guccione JM, Ratcliffe MB, Sundnes JS (2012) Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study. Am J Physiol Heart Circ Physiol 302(1):H206–H214

    Article  Google Scholar 

  • Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM (2006) Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114:2627–2635

    Article  Google Scholar 

  • Warren SE, Royal HD, Markis JE, Grossman W, McKay RG (1988) Time course of left ventricular dilation after myocardial infarction: influence of infarct-related artery and success of coronary thrombolysis. J Am Coll Cardiol 11(9):12–19

    Article  Google Scholar 

  • Wenk JF, Wall ST, Peterson RC, Helgerson SL, Sabbah HN, Burger M, Stander N, Ratcliffe MB, Guccione JM (2009) A method for automatically optimizing medical devices for treating heart failure: designing polymeric injection patterns. J Biomech Eng 131:121011 (December 2009)

    Article  Google Scholar 

  • Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, Mendizabal AM, Pattany PM, Lopera Ga, Fishman J, Zambrano JP, Heldman AW, Hare JM (2011) Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 108(7):792–796

    Article  Google Scholar 

  • Winslow RL, Rice J, Jafri S, Marban E, O’Rourke B (1999) Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res 84(5):571–586

    Article  Google Scholar 

  • Yu C-M, Bleeker GB, Fung JW-H, Schalij MJ, Zhang Q, van der Wall EE, Chan Y-S, Kong S-L, Bax JJ (2005) Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation 112:1580–1586

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marie Curie International Outgoing Fellowship within the 7th European Community Framework Program (M. Genet) and a grant from the American Heart Association 14BGIA18850020 (J.F. Wenk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lik Chuan Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 367 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, L.C., Sundnes, J., Genet, M. et al. An integrated electromechanical-growth heart model for simulating cardiac therapies. Biomech Model Mechanobiol 15, 791–803 (2016). https://doi.org/10.1007/s10237-015-0723-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0723-8

Keywords

Navigation