Skip to main content
Log in

Quantitative Visually Lossless Compression Ratio Determination of JPEG2000 in Digitized Mammograms

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The current study presents a quantitative approach towards visually lossless compression ratio (CR) threshold determination of JPEG2000 in digitized mammograms. This is achieved by identifying quantitative image quality metrics that reflect radiologists’ visual perception in distinguishing between original and wavelet-compressed mammographic regions of interest containing microcalcification clusters (MCs) and normal parenchyma, originating from 68 images from the Digital Database for Screening Mammography. Specifically, image quality of wavelet-compressed mammograms (CRs, 10:1, 25:1, 40:1, 70:1, 100:1) is evaluated quantitatively by means of eight image quality metrics of different computational principles and qualitatively by three radiologists employing a five-point rating scale. The accuracy of the objective metrics is investigated in terms of (1) their correlation (r) with qualitative assessment and (2) ROC analysis (A z index), employing pooled radiologists’ rating scores as ground truth. The quantitative metrics mean square error, mean absolute error, peak signal-to-noise ratio, and structural similarity demonstrated strong correlation with pooled radiologists’ ratings (r, 0.825, 0.823, −0.825, and −0.826, respectively) and the highest area under ROC curve (A z , 0.922, 0.920, 0.922, and 0.922, respectively). For each quantitative metric, the highest accuracy values of corresponding ROC curves were used to define metric cut-off values. The metrics cut-off values were subsequently used to suggest a visually lossless CR threshold, estimated to be between 25:1 and 40:1 for the dataset analyzed. Results indicate the potential of the quantitative metrics approach in predicting visually lossless CRs in case of MCs in mammography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E: Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300, 2010

    Article  PubMed  Google Scholar 

  2. Clark R: Breast cancer screening: is it worthwhile? Cancer Control 2(3):189–194, 1995

    PubMed  Google Scholar 

  3. Costaridou L, Skiadopoulos S, Karahaliou A, Arikidis N, Panayiotakis G: Computer-aided diagnosis in breast imaging: Trends and challenges, In: Exarchos TP, Papadopoulos A, Fotiadis DI Eds. Handbook of Research on Advanced Techniques in Diagnostic Imaging and Biomedical Applications. Hershey, PA: IDEA Group Inc. Global, 2009, p142-159

  4. Skaane P: Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review. Acta Radiol 50(1):3–14, 2009

    Article  PubMed  CAS  Google Scholar 

  5. Bankman I: Handbook of Medical Image Processing and Analysis, 2nd edition. Academic, Burlington, 2008

    Google Scholar 

  6. Huang HK: PACS and Imaging Informatics: Basic Principles and Applications. WILEY-LISS, Hoboken, 2004

    Book  Google Scholar 

  7. European Society of Radiology (ESR): Usability of irreversible image compression in radiological imaging. A position paper by European Society of Radiology (ESR). Insights Imaging 2(2):103–115, 2011

    Article  Google Scholar 

  8. Kang BJ, Kim HS, Park CS, Choi JJ, Lee JH, Choi BG: Acceptable compression ratio of full-field digital mammography using JPEG 2000. Clin Radiol 66(7):609–613, 2011

    Article  PubMed  CAS  Google Scholar 

  9. Good WF, Sumkin JH, Ganott M, Hardesty L, Holbert B, Johns CM, Klym AH: Detection of masses and clustered microcalcifications on data compressed mammograms: an observer performance study. AJR, Am J Roentgenol 175(6):1573–1576, 2000

    Article  CAS  Google Scholar 

  10. Kocsis O, Costaridou L, Varaki L, Likaki E, Kalogeropoulou C, Skiadopoulos S, Panayiotakis G: Visually lossless threshold determination for microcalcification detection in wavelet compressed mammograms. Eur Radiol 13(10):2390–2396, 2003

    Article  PubMed  CAS  Google Scholar 

  11. Suryanarayanan S, Karellas A, Vedantham S, Waldrop SM, D’Orsi CJ: Detection of simulated lesions on data-compressed digital mammograms. Radiology 236(1):31–36, 2005

    Article  PubMed  Google Scholar 

  12. Penedo M, Souto M, Tahoces PG, Carreira JM, Villalón J, Porto G, Seoane C, Vidal JJ, Berbaum KS, Chakraborty DP, Fajardo LL: Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based set partitioning in hierarchical trees compression of digitized mammograms. Radiology 237(2):450–7, 2005

    Article  PubMed  Google Scholar 

  13. Kallergi M, Lucier BJ, Berman CG, Hersh MR, Kim JJ, Szabunio MS, Clark RA: High-performance wavelet compression for mammography: localization response operating characteristic evaluation. Radiology 238(1):62–73, 2006

    Article  PubMed  Google Scholar 

  14. Liang Z, Du X, Liu J, Yang Y, Rong D, Yao X, Li K: Effects of different compression techniques on diagnostic accuracies of breast masses on digitized mammograms. Acta Radiol 49(7):747–751, 2008

    Article  PubMed  Google Scholar 

  15. Sung MM, Kim HJ, Kim EK, Kwak JY, Yoo JK, Yoo HS: Clinical evaluation of JPEG2000 compression for digital mammography. IEEE Trans Nucl Sci 49(3):827–832, 2002

    Article  Google Scholar 

  16. Koff D, Bak P, Brownrigg P, Hosseinzadeh D, Khademi A, Kiss A, Lepanto L, Michalak T, Shulman H, Volkening A: Pan-Canadian evaluation of irreversible compression ratios (“lossy” compression) for development of national guidelines. J Digit Imaging 22(6):569–578, 2009

    Article  PubMed  Google Scholar 

  17. Erkel AR, Pattynama PM: Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology. Eur J Radiol 27:88–94, 1998

    Article  PubMed  Google Scholar 

  18. Perlmutter SM, Cosman PC, Gray RM, Olshen RA, Ikeda D, Adams CN, Betts BJ, Williams MB, Perlmutter KO, Li J, Aiyer A, Fajardo L, Birdwell R, Daniele BL: Image quality in lossy compressed digital mammograms. Signal Processing 59(2):189–210, 1997

    Article  Google Scholar 

  19. Zyout I, Abdel-Qader I, Al-Otum H: Progressive lossy to lossless compression of ROI in mammograms. Effects on microcalcification detection. Integr Comput-Aided Eng 15(3):241–251, 2008

    Google Scholar 

  20. Kim H, Jeong J, Lee J, Kang H, Dong K, Chung W, Kim E: Picture quality according to the type of detector in full-field digital mammography. J Korean Phys Soc 58(2):364–371, 2011

    Article  Google Scholar 

  21. Przelaskowski A: Vector quality measure of lossy compressed medical images. Comput Biol Med 34(4):193–207, 2004

    Article  PubMed  Google Scholar 

  22. Heath M, Bowyer KW, Kopans D, Kegelmeyer P, Moore R, Chang K, Kumaran SM: Current status of the Digital Database for Screening Mammography. Proceedings of the Fourth International Workshop on Digital Mammography. Kluwer, Dordrecht, 1998, pp 457–460

  23. Heath M, Bowyer KW, Kopans D, Moore R, Kegelmeyer P: The Digital Database for Screening Mammography. Proceedings of the Fifth International Workshop on Digital Mammography. Madison, WI: Medical Physics Publishing,2001, pp 212–218

  24. D'Orsi CJ, Bassett LW, Berg WA, et al. BI-RADS: Mammography, 4th edition in: D'Orsi CJ, Mendelson EB, Ikeda DM, et al: Breast Imaging Reporting and Data System: ACR BI-RADS – Breast Imaging Atlas, Reston, VA, American College of Radiology, 2003

  25. Li H, Giger ML, Olopade OI, Margolis A, Lan L, Chinander MR: Computerized texture analysis of mammographic parenchymal patterns of digitized mammograms. Acad Radiol 12(7):863–73, 2005

    Article  PubMed  Google Scholar 

  26. Skodras A, Christopoulos C, Ebrahimi T: The JPEG 2000 still image compression standard. IEEE Signal Process Mag 18(5):36–58, 2001

    Article  Google Scholar 

  27. Kofidis E, Kolokotronis N, Vassilarakou A, Theodoridis S, Cavouras D: Wavelet-based medical image compression. Future Gener Comp Sy 15(2):223–243, 1999

    Article  Google Scholar 

  28. Sakellaropoulos P, Costaridou L, Panayiotakis G: An image visualization tool in mammography. Med Inform Internet Med 24(1):53–73, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Avcibas I, Sankur B, Sayood K: Statistical evaluation of image quality measures. J Electron Imaging 11(2):206–223, 2002

    Article  Google Scholar 

  30. Eskicioglu AM, Fisher PS: Image quality measures and their performance. IEEE Trans Commun 43(12):2959–2965, 1995

    Article  Google Scholar 

  31. Wang Z, Bovik AC: Mean squared error: love it or leave it? A new look at signal fidelity measures. IEEE Signal Process Mag 26(1):98–117, 2009

    Article  Google Scholar 

  32. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP: Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612, 2004

    Article  PubMed  Google Scholar 

  33. Cohen I: A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):20–37, 1960

    Article  Google Scholar 

  34. Suryanarayanan S, Karellas A, Vedantham S, Waldrop SM, D’Orsi CJ: A perceptual evaluation of JPEG 2000 image compression for digital mammography: contrast-detail characteristics. J Digit Imaging 17(1):64–70, 2004

    Article  PubMed  Google Scholar 

  35. Kim KJ, Kim B, Mantiuk R, Richter T, Lee H, Kang HS, Seo J, Lee KH: A comparison of three image fidelity metrics of different computational principles for JPEG2000 compressed abdomen CT images. IEEE Trans. Med. Imag 29(8):1496–1503, 2010

    Article  Google Scholar 

  36. Kim B, Lee KH, Kim KJ, Mantiuk R, Hahn S, Kim TJ, Kim YH: Prediction of perceptible artifacts in JPEG 2000–compressed chest CT images using mathematical and perceptual quality metrics. AJR Am J Roentgenol 190:328–334, 2008

    Article  PubMed  Google Scholar 

  37. Penedo M, Pearlman WA, Tahoces PG, Souto M, Vidal JJ: Region-based wavelet coding methods for digital mammography. IEEE Trans Med Imaging 22(10):1288–1296, 2003

    Article  PubMed  Google Scholar 

  38. Zheng B, Sumkin JH, Good WF, Maitz GS, Chang YH, Gur D: Applying computer-assisted detection schemes to digitized mammograms after JPEG data compression: an assessment. Acad Radiol 7(8):595–602, 2000

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the Department of Radiology of the University Hospital of Patras for their contribution in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena I. Costaridou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiev, V.T., Karahaliou, A.N., Skiadopoulos, S.G. et al. Quantitative Visually Lossless Compression Ratio Determination of JPEG2000 in Digitized Mammograms. J Digit Imaging 26, 427–439 (2013). https://doi.org/10.1007/s10278-012-9538-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-012-9538-7

Keywords

Navigation