Skip to main content

Advertisement

Log in

Cement industry: sustainability, challenges and perspectives

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Cement-based materials, such as concrete and mortars, are used in extremely large amounts. For instance, in 2009 concrete production was superior to 10 billion tons. Cement plays an important role in terms of economic and social relevance since it is fundamental to build and improve infrastructure. On the other hand, this industry is also a heavy polluter. Cement production releases 5–6% of all carbon dioxide generated by human activities, accounting for about 4% of global warming. It can release huge amounts of persistent organic pollutants, such as dioxins and heavy metals and particles. Energy consumption is also considerable. Cement production use approximately 0.6% of all energy produced in the United States. On the other hand, the chemistry underlying cement production and its applications can be very helpful to overcome these environmental issues. In terms of manufacture, there are many alternative materials that can be used to minimize carbon dioxide production and reduce energy consumption, such as calcium sulfoaluminates and β-Ca2SiO4—rich cements. Using residues from other industrial sectors can also improve the sustainability of cement industry. Under adequate conditions, waste materials such as tyres, oils, municipal solid waste and solvents can be used as supplementary fuel in cement plants. Concrete can be used for encapsulation of waste materials such as tyres, plastics and glasses. In this review, we discuss some aspects of the cement industry associated with environmental science. Other issues such as economic aspects, the chemistry of cement manufacture and its properties are also presented. Special attention is given to the role that cement chemistry can play in terms of sustainability. The most relevant aspects are outlined, such as the use of alternative materials, new possibilities and also the recycling of materials. It is also argued that an important aspect is the role of research and development necessary to improve cement sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CKD:

Cement kiln dust

c/s:

Cement to sand ratio

ITZ:

Interfacial transition zone

MDF:

Macro-defect-free cement

NOx:

Nitrogen oxides

PCDDs:

Polychlorinated dibenzodioxins

PCDFs:

Polychlorinated dibenzofurans

PCBs:

Polychlorinated biphenyls

PAHs:

Polycyclic aromatic hydrocarbons

PCDDs:

Polychlorinated dibenzo-p-dioxins

w/c:

Water to cement ratio

References

  • Abdul-Wahab SA (2006) Impact of fugitive dust emissions from cement plants on nearby communities. Ecol Modell 195:338–348

    Google Scholar 

  • Abimbola AF, Kehinde-Phillips OO, Olatunji AS (2007) The Sagamu cement factory, SW Nigeria: is the dust generated a potential health hazard? Environ Geochem Health 29:163–167

    CAS  Google Scholar 

  • Ahmed SFU, Mihashi H (2007) A review on durability properties of strain hardening fibre reinforced cementitious composites (SHFRCC). Cem Concr Compos 29:365–376

    CAS  Google Scholar 

  • Aiello MA, Leuzzi F, Centonze G, Maffezzoli A (2009) Use of steel fibers recovered from waste tyres as reinforcement in concrete: pull-out behavior, compressive and flexural strength. Waste Manag 29:1960–1970

    CAS  Google Scholar 

  • Aitcin PC (2000) Cements of yesterday and today—concrete of tomorrow. Cem Concr Res 30:1349–1359

    CAS  Google Scholar 

  • Akçaoğlu T, Tokyay M, Çelik T (2003) Effect of coarse aggregate size and matrix quality on ITZ and failure behavior of concrete under uniaxial compression. Cem Concr Res 26:633–638

    Google Scholar 

  • Akçaoğlu T, Tokyay M, Çelik T (2004) Assessing the ITZ microcracking via scanning electron microscope and its effect on the failure behavior of concrete. Cem Concr Res 35:358–363

    Google Scholar 

  • Ambrose CA, Hooper R, Potter AK, Singh MM (2002) Diversion from landfill: quality products from valuable plastics. Resour Conserv Recycling 36:309–318

    Google Scholar 

  • ASTM C150/C150 M—09 Standard specification for Portland cement

  • Atsu SS, Kilicarslan MA, Kucukesmen C, Aka PS (2006) Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthet Dentistry 90:430–436

    Google Scholar 

  • Azenha M, Faria R, Ferreira D (2009) Identification of early-age concrete temperatures and strains: monitoring and numerical simulation. Cem Concr Compos 31:369–378

    CAS  Google Scholar 

  • Batayneh M, Marie I, Asi I (2003) Use of selected waste materials in concrete mixes. Waste Manag 27:1870–1876

    Google Scholar 

  • Bayasi Z, Zeng J (1993) Properties of polypropylene fiber-reinforced concrete. ACI Mater J 90:605–610

    CAS  Google Scholar 

  • Becchio C, Corgnati SP, Kindinis A, Pagliolico S (2009) Improving environmental sustainability of concrete products: investigation on MWC thermal and mechanical properties. Eng Build 41:1127–1134

    Google Scholar 

  • Belmouden Y, Lestuzzi P (2007) Analytical model for predicting nonlinear reversed cyclic behaviour of reinforced concrete structural walls. Eng Struct 29:1263–1276

    Google Scholar 

  • Benestad C (1989) Incineration of hazardous waste in cement kilns. Waste Manage Res 7:351–353

    CAS  Google Scholar 

  • Bignozzi MC, Sandrolini F (2006) Tyre rubber waste recycling in self-compacting concrete. Cem Concr Res 36:735–739

    CAS  Google Scholar 

  • Boesel LF, Reis RL (2008) A review on the polymer properties of Hydrophilic, partially degradable and bioactive acrylic cements (HDBC). Prog Polym Sci 33:180–190

    CAS  Google Scholar 

  • Börjesson P, Gustavsson L (2000) Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives. Eng Policy 28:575–588

    Google Scholar 

  • Brandt AM (2008) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct 86:3–9

    Google Scholar 

  • Brooks JJ, Johari MAM, Mazloom M (2000) Effect admixture on the setting times of high-strength concrete. Cem Concr Compos 22:293–301

    CAS  Google Scholar 

  • Buchan PA, Chen JF (2007) Blast resistance of FRP composites and polymer strengthened concrete and masonry structures—a state-of-the-art review. Compos: Part B 38:509–522

    Google Scholar 

  • Burat F, Güney A, Kangal MO (2009) Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Manag 29:1807–1813

    CAS  Google Scholar 

  • Carrasco F, Bredin N, Heitz M (2002) Gaseous contaminant emissions as affected by burning scrap tires in cement manufacturing. J Environ Qual 31:1484–1490

    CAS  Google Scholar 

  • Carrasco MF, Menéndez G, Bonavetti V, Irassar EF (2005) Strength optimization of “tailor-made-cement” with limestone filler and blast furnace slag. Cem Concr Res 35:1324–1331

    CAS  Google Scholar 

  • Chaipanich A, Nochaiya T, Wongkeo W, Torkittikul P (2007) Compressive strength and microstructure of carbon nanotubes—fly ash cement composites. Mat Sci Eng A527:1063–1067

    Google Scholar 

  • Chan DY-L, Yang K-H, Hsu C-H, Chien M-H, Hong G-B (2007) Current situation of energy conservation in high energy-consuming industries in Taiwan. Eng Policy 35:202–209

    Google Scholar 

  • Chandra HL, Shet C, Ghonem H (2002) Some issues in the application of cohesive zone models for metal—ceramic interfaces. Int J Solids Structs 39:2827–2855

    Google Scholar 

  • Charlestra L, Courtemanch DL, Amirbahman A, Patterson H (2008) Semipermeable membrane device (SPMD) for monitoring PCDD and PCDF levels from a paper mill effluent in the Androscoggin River, Maine, USA. Chemosphere 72:1171–1180

    CAS  Google Scholar 

  • Chen IA, Juenger MCG (2009) Incorporation of waste materials into Portland cement clinker synthesized from natural raw materials. J Mat Sci 44:2617–2627

    CAS  Google Scholar 

  • Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34:1499–1519

    CAS  Google Scholar 

  • Chindaprasirt P, Jaturapitakkul C, Sinsiri T (2005) Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem Concr Compos 27:425–428

    CAS  Google Scholar 

  • Chou LH, Lu C-K, Chang J-R, Maw TL (2007) Use of waste rubber as concrete additive. Waste Manag Res 25:68–76

    CAS  Google Scholar 

  • Chung DDl (1997) Self-monitoring structural materials. Mat Sci Eng R22:57–78

    Google Scholar 

  • Clark BA, Brown PW (1999) The formation of calcium sulfoaluminate hydrate compounds part I. Cem Concr Res 29:1943–1948

    CAS  Google Scholar 

  • Clark BA, Brown PW (2000) The formation of calcium sulfoaluminate hydrate compounds part II. Cem Concr Res 30:233–240

    CAS  Google Scholar 

  • Collepardi M (2003) A state-of-the-art review on delayed ettringite attack on concrete. Cem Concr Compos 25:401–407

    CAS  Google Scholar 

  • Colom X, Cañavate J, Carrillo F, Velasco JI, Pagès P, Mujal R, Nogués F (2006) Structural and mechanical studies on modified reused tyres composites. European Polym J 42:2369–2378

    CAS  Google Scholar 

  • Colom X, Carrillo F, Cañavate J (2007) Composites reinforced with reused tyres: surface oxidant treatment to improve the interfacial compatibility. Composites: Part A 38:44–50

    Google Scholar 

  • Conesa JA, Gálvez A, Mateos F, Martín-Gullón I, Font R (2008) Organic and inorganic pollutants from cement kiln stack feeding alternative fuels. J Hazard Mat 158:585–592

    CAS  Google Scholar 

  • Dahlan I, Lee KT, Kamaruddin AH, Mohamed AR (2006) Key factor in rice husk ash/CaO sorbent for high flue gas desulfurization activity. Environ Sci Technol 2006:6032–6037

    Google Scholar 

  • Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate change initiatives. Cem Concr Res 38:115–127

    CAS  Google Scholar 

  • Denhart H (2010) Deconstructing disaster: Economic and environmental impacts of deconstruction in post-Katrina New Orleans. Resour Conserv Recycling 54:194–204

    Google Scholar 

  • Díaz LA, Torrecillas R, De Aza HD, Pena P, De Aza S (2005) Alumina-rich refractory concretes with added spinel, periclase and dolomite: a comparative study of their microstructural evolution with temperature. J European Ceram Soc 25:1499–1506

    Google Scholar 

  • Dickson LC, Lenoir D, Hutzinger O (1992) Quantitative comparison of de novo and precursor formation of polychlorinated dibenzo-p- PCDD/PCDF under simulated municipal solid waste incinerator postcombustion conditions. Environ Sci Technol 26:1822–1828

    CAS  Google Scholar 

  • Dorozhkin SV (2008) Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos Struct 86:3–9

    Google Scholar 

  • Duchesne J, Reardon EJ (1998) Determining controls on element concentrations in cement kiln dust leachate. Waste Manag 18:339–350

    CAS  Google Scholar 

  • Eckert JO Jr, Guo K (1998) Heavy metals in cement and cement kiln dust from kilns co-fired with hazardous waste-derived fuel: application of EPA leaching and acid-digestion procedures. J Hazard Mat 59:55–93

    CAS  Google Scholar 

  • Erdem TK, Meral C, Tokyay M, Erdoğan TY (2006) Use of perlite as a pozzolanic addition in producing blended cements. Cem Concr Compos 29:13–21

    Google Scholar 

  • Ewais EMM, Khalil NM, Amin MS, Ahmed YMZ, Barakat MA (2009) Utilization of aluminum sludge and aluminum slag (dross) for the manufacture of calcium aluminate cement. Ceram Int 35:3381–3388

    CAS  Google Scholar 

  • Faure PF, Rodts S (2008) Proton NMR relaxation as a probe for setting cement pastes. Magn Reson Imaging 26:1183–1196

    CAS  Google Scholar 

  • Ferrão P, Ribeiro P, Silva P (2008) A management system for end-of-life tyres: a Portuguese case study. Waste Manag 28:604–614

    Google Scholar 

  • Frías M, Rojas IS, Rodríguez C (2009) The influence of SiMn slag on chemical resistance of blended cement pastes. Constr Build Mat 23:1472–1475

    Google Scholar 

  • Garrault S, Nonat A (2001) Hydrated layer formation on tricalcium and dicalcium silicate surfaces: experimental study and numerical simulations. Langmuir 17:8131–8138

    CAS  Google Scholar 

  • Gartner E (2004) Industrially interesting approaches to ‘‘low-CO2’’ cements. Cem Concr Res 34:1489–1498

    CAS  Google Scholar 

  • Gaspar PL, Brito J (2008) Quantifying environmental effects on cement-rendered facades: a comparison between different degradation indicators. Building Environ 43:1818–1828

    Google Scholar 

  • Ghorab HY, Kishar EA, Abul Elfetouh SH (1998a) Studies on the stability of the calcium sulfoaluminate hydrates. Part II: effects of alite, lime, and monocarboaluminate hydrate. Cem Concr Res 28:53–61

    CAS  Google Scholar 

  • Ghorab HY, Kishar EA, Abul Elfetouh SH (1998b) Studies on the stability of the calcium sulfoaluminate hydrates part III: the monophases. Cem Concr Res 28:761–763

    Google Scholar 

  • Glasser FP, Zhang L (2001) High-performance cement matrices based on calcium sulfoaluminate—belite compositions. Cem Concr Res 31:1881–1886

    CAS  Google Scholar 

  • Götz R, Bauer O-H, Friesel P, Herrmann T, Jantzen E, Kutzke M, Lauer R, Paepke O, Roch K, Rohweder U, Schwartz R, Sievers S, Stachel B (2007) Vertical profile of PCDD/Fs, dioxin-like PCBs, other PCBs, PAHs, chlorobenzenes, DDX, HCHs, organotin compounds and chlorinated ethers in dated sediment/soil cores from flood-plains of the river Elbe, Germany. Chemosphere 67:592–603

    Google Scholar 

  • Guo J, Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mat 168:567–590

    CAS  Google Scholar 

  • Gupta S, van der Helma FCT, van Keulenc F (2004) Stress analysis of cemented glenoid prostheses in total shoulder arthroplasty. J Biomechanics 37:1777–1786

    CAS  Google Scholar 

  • Hadley DW, Dolch WL, Diamond S (2000) On the occurrence of hollow-shell hydration grains in hydrated cement paste. Cem Concr Res 30:1–6

    CAS  Google Scholar 

  • Hale WM, Freyne SF, Russel BW (2009) Examining the frost resistance of high performance concrete. Constr Build Mat 23:878–888

    Google Scholar 

  • Harding JS, Brown C, Jones F, Taylor R (2007) Distribution and habitats of mosquito larvae in the Kingdom of Tonga. Australian J Entomol 46:332–338

    Google Scholar 

  • Hartman MR, Berliner R (2005) In situ neutron powder diffraction investigation of the hydration of tricalcium aluminate in the presence of gypsum. J Solid State Chem 178:3256–3264

    CAS  Google Scholar 

  • Heikal M (2000) Effect of temperature on the physico-mechanical and mineralogical properties of Homra pozzolanic cement pastes. Cem Concr Res 30:1835–1839

    CAS  Google Scholar 

  • Herdt-Losavio M, Mauer MP, Carlson GA (2008) Development of an exposure assessment method for epidemiological studies of New York State personnel who responded to the world trade center. Disaster Ann Occup Hyg 52:83–93

    CAS  Google Scholar 

  • Hernádez-Olivares F, Barluenga G, Bollati M, Witoszek B (2002) Static and dynamic behaviour of recycled tyre rubber-filled concrete. Cem Concr Res 32:1587–1596

    Google Scholar 

  • Hoang TQT, Lagattu F, Brillaud J (2010) Natural fiber-reinforced recycled polypropylene: microstructural and mechanical properties. J Reinforced Plast Compos 29:209–217

    CAS  Google Scholar 

  • Holst O, Stenberg B, Christiansson M (1998) Biotechnological possibilities for waste tyre-rubber treatment. Biodegradation 9:301–310

    CAS  Google Scholar 

  • Hooton RD (2008) Bridging the gap between research and standards. Cem Concr Res 28:247–258

    Google Scholar 

  • Hopke PK (2009) Contemporary threats and air pollution. Atmos Environ 43:87–93

    CAS  Google Scholar 

  • Horvath A (2004) Construction materials and the environment. Annu Rev Environ Resour 29:181–204

    Google Scholar 

  • Houst YF, Bowen P, Perche F, Kauppi A, Borget P, Galmiche L, Meins JF, Lafuma F, Flatt RJ, Schober I, Banfill PFG, Swift DS, Myrvold BO, Petersen BG, Reknes K (2008) Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cem Concr Res 38:1197–1209

    CAS  Google Scholar 

  • Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17:668–675

    CAS  Google Scholar 

  • Idorn GM (2005) Innovation in concrete research—review and perspective. Cem Concr Res 35:3–10

    CAS  Google Scholar 

  • Iliuta I, Johansen K-D, Jensen A, Jensen LS (2002) Modeling of in-line low-NO x calciners—a parametric study. Chem Eng Sci 57:789–803

    CAS  Google Scholar 

  • Ishida H, Mabushi K, Sasaki K, Mitsuda T (1994) Low-temperature synthesis of β-Ca2SiO4 from hillebrandite. J Am Ceram Soc 75:2427–2432

    Google Scholar 

  • Işikli B, Demir TA, Akar T, Berber A, Ürer¨ SM, Kalyoncu C, Canbek M (2006) Cadmium exposure from the cement dust emissions: a field study in a rural residence. Chemosphere 63:1546–1552

    Google Scholar 

  • Jacott M, Reed C, Taylor A, Winfield M (2003) Energy use in the cement industry in North America: emissions, waste generation and pollution control, 1990–2001 Commission for Environmental Cooperation 2nd North American symposium on assessing the environmental effects of trade

  • Janotka I, Krajči L, Ray A, Mojumdar SC (2003) The hydration phase and pore structure formation in the blends of sulfoaluminate-belite cement with Portland cement. Cem Concr Res 33:489–497

    CAS  Google Scholar 

  • Jegatheesan V, Liow JL, Shu L, Kim SH, Visvanathan C (2009) The need for global coordination in sustainable development. J Clean Prod 17:637–643

    Google Scholar 

  • Jin G-Z, Lee SJ, Park H, Lee J-E, Shin S-K, Chang S-K (2009) Characteristics and emission factors of PCDD/Fs in various industrial wastes in South Korea. Chemosphere 75:1226–1231

    CAS  Google Scholar 

  • Kacimi L, Simon-Masseron A, Ghomari A, Derriche Z (2006) Reduction of clinkerization temperature by using phosphogypsum. J Hazard Mat B137:129–137

    Google Scholar 

  • Kalapathy U, Proctor A, Shultz J (2000) A simple method for production of pure silica from rice hull ash. Bioresource Technol 73:257–262

    CAS  Google Scholar 

  • Kalinichev AG, Wang J, Kirkpatrick RJ (2007) Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: Application to cement materials. Cem Concr Res 37:337–347

    CAS  Google Scholar 

  • Kani EM, Allahverdi A (2009) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J Mater Sci 44:3088–3097

    Google Scholar 

  • Karstensen KH (2008) Formation, release and control of dioxins in cement kilns. Chemosphere 70:543–560

    CAS  Google Scholar 

  • Kendall K, Howard AJ, Birchall JD, Pratt PL (1983) The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials. Phil Trans R Soc Lond A310:139–153

    Google Scholar 

  • Kendall A, Kesler SE, Keoleian GA (2008) Geologic vs. geographic constraints on cement resources. Resources Policy 33:160–167

    Google Scholar 

  • Khawam A, Flanagan DR (2006) Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B 110:17315–17328

    CAS  Google Scholar 

  • Konsta-Gdoutos MS, Shah SP (2003) Hydration and properties of novel blended cements based on cement kiln dust and blast furnace slag. Cem Concr Res 33:1269–1276

    CAS  Google Scholar 

  • Krausmann F, Gingrich S, Eisenmenger N, Erb K-H, Haberl H, Fischer-Kowalski M (2009) Growth in global materials use, gdp and population during the 20th century. Ecol Economics 68:2696–2705

    Google Scholar 

  • Kurdowski W, Duszak S, Trybalska B (1997) Belite produced by means of low-temperature synthesis. Cem. Concr. Res 27:51–62

    CAS  Google Scholar 

  • Lea FM (1971) Chemistry of cement and concrete. Chemical Publishing Company, New York

    Google Scholar 

  • Lemieux P, Stewart E, Realff M, Mulholland JA (2004) Emissions study of co-firing waste carpet in a rotary kiln. J Environ Manage 70:27–33

    Google Scholar 

  • Limbachiya MC, Marrocchino E, Koulouris A (2007) Chemical–mineralogical characterisation of coarse recycled concrete aggregate. Waste Manage 27:201–208

    CAS  Google Scholar 

  • Lohman K, Seigneur C (2001) Atmospheric fate and transport of dionxs: local impacts. Chemosphere 45:161–171

    CAS  Google Scholar 

  • Lothenbach B, Matschei T, Möschner G, Glasser FP (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem Concr Res 38:1–18

    CAS  Google Scholar 

  • Lund P (2007) Impacts of EU carbon emission trade directive on energy-intensive industries—Indicative micro-economic analyses. Eco Econ 63:799–806

    Google Scholar 

  • Luttropp C, Johansson J (2010) Improved recycling with life cycle information tagged to the product. J Clean Prod 18:346–354

    Google Scholar 

  • Luz CA, Rocha JC, Cheriaf M, Pera J (2006) Use of sulfoaluminate cement and bottom ash in the solidification/stabilization of galvanic sludge. J Hazard Mat B 136:837–845

    CAS  Google Scholar 

  • Mahfouz M, Miranda MS, Oliveira MBR, Cassiola F, Rodrigues FA (2008) Biogenic cements from rice hull ash doped with aluminum and iron. Chemosphere 73:832–836

    CAS  Google Scholar 

  • Malhotra VM (1983) Superplasticizers and other chemical admixtures in concrete: proceedings, third international conference, American Concrete Institute, Ottawa, Canada

  • Mandal SK, Madheswaran S (2010) Environmental efficiency of the Indian cement industry: an interstate analysis. Eng Policy 38:1108–1118

    CAS  Google Scholar 

  • Manzano H, Ayuela A, Dolado JS (2007) On the formation of cementitious C–S–H nanoparticles. J Comput-Aided Mater Des 14:45–51

    CAS  Google Scholar 

  • Maslehuddin M, Al-Amoudi OSB, Rahman MK, Ali MR, Barry MS (2009) Properties of cement kiln dust concrete. Constr Build Mat 23:2357–2361

    Google Scholar 

  • Massicotte R, Robidoux P-Y, Sauvé S, Flipo D, Mathiot A, Fournier M, Trottier B (2004) Immunotoxicological response of the earthworm Lumbricus terrestris following exposure to cement kiln dusts. Ecotoxicol Environ Saf 59:10–16

    CAS  Google Scholar 

  • Matschei T, Lothenbach B, Glasser FP (2007a) The AFm phase in Portland cement. Cem Concr Res 37:118–130

    CAS  Google Scholar 

  • Matschei T, Lothenbach B, Glasser FP (2007b) Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cem Concr Res 37:1379–1410

    CAS  Google Scholar 

  • Mechling JM, Lecomte A, Diliberto C (2009) Relation between cement composition and compressive strength of pure pastes. Cem Concr Compos 31:255–262

    CAS  Google Scholar 

  • Mehta PM, Monteiro PJM (1993) Concrete microstructure, properties and materials, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Merino MR, Astorqui JSC, Cortina MG (2007) Viability analysis and constructive applications of lightened mortar (rubber cement mortar). Constr Build Mat 21:1785–1791

    Google Scholar 

  • Mertens G, Snellings R, Balen KV, Bicer-Simsir B, Verlooy P, Elsen J (2009) Pozzolanic reactions of common natural zeolites with lime and parameters affecting their reactivity. Cem Concr Res 39:233–240

    CAS  Google Scholar 

  • Meyer C (2009) The greening of the concrete industry. Cem Concr Compos 31:601–605

    CAS  Google Scholar 

  • Millard MJ, Kurtis KE (2008) Effects of lithium nitrate admixture on early-age cement hydration. Cem Concr Res 38:500–510

    CAS  Google Scholar 

  • Minard H, Garrault S, Regnaud L, Nonat A (2007) Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum. Cem Concr Res 37:1418–1426

    CAS  Google Scholar 

  • Morales JA, Pirela D, Durán J (1996) Determination of the levels of Na, K, Ca, Mg, Fe, Zn and Cu in aerosols of the western Venezuelan Savannah region. Sci Total Environ 180:155–164

    CAS  Google Scholar 

  • Morsli K, Torre AG, Stöber S, Cuberos AJM, Zahir M, Aranda MAG (2007) Quantitative phase analysis of laboratory-active belite clinkers by synchrotron powder diffraction. J Am Ceram Soc 90:3205–3212

    CAS  Google Scholar 

  • Moya JS, Lopez-Esteban S, Pecharromán C (2007) The challenge of ceramic/metal microcomposites and nanocomposites. Progress Mat Sci 52:1017–1090

    CAS  Google Scholar 

  • Mwaiselage J, Tveit M, Moen B, Yost M (2005) Variability in dust exposure in a cement factory in Tanzania. Ann Occup Hyg 49:511–519

    Google Scholar 

  • Nachbaur L, Mutin JC, Nonat A, Choplin L (2001) Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting. Cem Concr Res 31:183–192

    CAS  Google Scholar 

  • Nakajo K, Imazatob S, Takahashib T, Kibab W, Ebisub S, Takahashi N (2009) Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dental Mat 25:703–708

    CAS  Google Scholar 

  • Nehdi M, Sumner J (2003) Recycling waste latex paint in concrete. Cem Concr Res 33:857–863

    CAS  Google Scholar 

  • Newmark CM (1998) Price and seller concentration in cement: effective oligopoly or misspecified transportation cost? Economics Letters 60(1998):243–250

    Google Scholar 

  • Papadakis VG, Tsimas S (2005) Greek supplementary cementing materials and their incorporation in concrete. Cem Concr Compos 27:223–230

    CAS  Google Scholar 

  • Paulon VA, Molin DD, Monteiro PJM (2004) Statistical analysis of the effect of mineral admixtures on the strength of the interfacial transition zone. Interface Sci 12:399–410

    CAS  Google Scholar 

  • Peethamparan S, Olek J, Lovell J (2008) Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization. Cem Concr Res 38:803–815

    CAS  Google Scholar 

  • Pellegrino C, Porto F, Modena C (2009) Rehabilitation of reinforced concrete axially loaded elements with polymer-modified cementicious mortar. Constr Build Mat 23:3129–3137

    Google Scholar 

  • Péra J, Ambroise J (2004) New applications of calcium sulfoaluminate cement. Cem Concr Res 34:671–676

    Google Scholar 

  • Peterson VK, Juenger MCG (2006) Hydration of tricalcium silicate: effects of CaCl2 and sucrose on reaction kinetics and product formation. Chem Mater 18:5798–5804

    CAS  Google Scholar 

  • Phair JH (2006) Green chemistry for sustainable cement production and use. Green Chem 8:763–780

    CAS  Google Scholar 

  • Phuong NT, Villoutreix G (2008) Preparation of recycled polypropylene/organophilic modified layered silicates nanocomposites part i: the recycling process of polypropylene and the mechanical properties of recycled polypropylene/organoclay nanocomposites. J Reinforced Plast Compos 27:1983–2000

    Google Scholar 

  • Pingale ND, Shukla SR (2008) Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste. Europen Polym J 44:4151–4156

    CAS  Google Scholar 

  • Polat R, Gürol A, Budak G, Karabulut A, Ertuğrul M (2004) Elemental composition of cement kiln dust, raw material and cement from a coal-fired cement factory using energy dispersive X-ray fluorescence spectroscopy. J Quant Spec Radiative Transfer 83:377–385

    CAS  Google Scholar 

  • Poon CS, Kou SC, Lam L (2002) Use of recycled aggregates in molded concrete bricks and blocks. Constr Build Mat 16:281–289

    Google Scholar 

  • Prisciandaro M, Mazziotti G, Veglio F (2003) Effect of burning supplementary waste fuels on the pollutant emissions by cement plants: a statistical analysis of process data. Resour Conserv Recycl 39:161–184

    Google Scholar 

  • Pulselli RM, Simoncini E, Ridolfi R, Bastianoni S (2008) Specific emergy of cement and concrete: An energy-based appraisal of building materials and their transport. Ecol Indicators 8:647–656

    Google Scholar 

  • Rahal K (2007) Mechanical properties of concrete with recycled coarse aggregate. Build Environ 42:407–415

    Google Scholar 

  • Raupp-Pereira F, Ball RJ, Rocha J, Labrincha JA, Allen JC (2008) New waste based clinkers: Belite and lime formulations. Cem Concr Res 38:511–521

    CAS  Google Scholar 

  • Rehan R, Nehdi M (2005) Carbon dioxide emissions and climate change: policy implications for the cement industry. Environ Sci Policy 8:105–114

    CAS  Google Scholar 

  • Reis MF, Sampaio C, Aguiar P, Melim JM, Miguel JP, Päpke O (2007) Biomonitoring of PCDD/Fs in populations living near Portuguese solid waste incinerators: levels in human milk. Chemosphere 67:S231–S237

    CAS  Google Scholar 

  • Richardson IG (2000) The nature of the hydration products in hardened cement pastes. Cem Concr Compos 22:97–113

    CAS  Google Scholar 

  • Ridi F, Fratini E, Mannelli F, Baglioni P (2005) Hydration process of cement in the presence of a cellulosic additive. A calorimetric investigation. J Phys Chem B 109:14727–14734

    CAS  Google Scholar 

  • Robinson GR, Menzie WD, Hyun H (2004) Recycling of construction debris as aggregate in the Mid-Atlantic Region, USA. Resour Conserv Recycl 42:275–294

    Google Scholar 

  • Rock M, Murphy JT, Rasiah R, van Seters P, Managi S (2009) A hard slog, not a leap frog: Globalization and sustainability transitions in developing Asia. Technol Forecast Soc Change 76:241–254

    Google Scholar 

  • Rodrigues FA (2003a) Synthesis of chemically and structurally modified dicalcium silicate. Cem Concr Res 29:1549–1551

    Google Scholar 

  • Rodrigues FA (2003b) Low-temperature synthesis of cements from rice hull ash. Cem Concr Res 33:1525–1529

    CAS  Google Scholar 

  • Rodrigues FA, Joekes I (1998) Macro-defect free cements: a new approach. Cem Concr Res 28:877–885

    CAS  Google Scholar 

  • Rodrigues FA, Monteiro PJM (1999) Hydrothermal synthesis of cement from rice hull ash. J Mat Sci Letters 19:1551–1552

    Google Scholar 

  • Romano JS, Bernardi RodriguesFA, Rodrigues JA LT, Segre N (2006) Calcium Silicate cements obtained from rice hull ash: a comparative study. J Mat Sci 41:1775–1779

    CAS  Google Scholar 

  • Romano JS, Marcato PD, Rodrigues FA (2007) Synthesis and Characterization of Manganese Oxide-Doped Dicalcium Silicates Obtained from Rice Hull Ash. Powder Technol 178:5–9

    CAS  Google Scholar 

  • Sabir BB, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23:441–454

    CAS  Google Scholar 

  • Sahu S, Thaulow N (2004) Delayed ettringite formation in Swedish concrete railroad ties. Cem Concr Res 34:1675–1681

    CAS  Google Scholar 

  • Santos RS, Rodrigues FA, Segre N, Joekes I (1999) Macro-defect free cements Influence of poly(vinyl alcohol), cement type, and silica fume. Cem Concr Res 28:747–751

    Google Scholar 

  • Schackelford JF, Doremus RH (2008) Ceramic and glass materials structure, properties and processing. Springer, New York

    Google Scholar 

  • Schecter A, Birnbaum L, Ryan JJ, Constable JD (2006) Dioxins: an overview. Environ Res 101:419–428

    CAS  Google Scholar 

  • Scrivener KL, Kirkpatrick JR (2008) Innovation in use and research on cementitious material. Cem Concr Res 38:128–136

    CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26:246–265

    CAS  Google Scholar 

  • Shen L, Cheng S, Gunson AJ, Wan H (2005) Urbanization, sustainability and the utilization of energy and mineral resources in China. Cities 22:287–302

    Google Scholar 

  • Shi C, Qian J (2000) High performance cementing materials from industrial slags—a review. Resour Conserv Recycling 29:195–207

    Google Scholar 

  • Shi J, Xu Y (2006) Estimation and forecasting of concrete debris amount in China. Resour Conserv Recycling 49:147–158

    Google Scholar 

  • Shi C, Meyer C, Behnood A (2008) Utilization of copper slag in cement and concrete. Resour Conserv Recycl 52:1115–1120

    Google Scholar 

  • Shih LH (1999) Cement transportation planning via fuzzy linear programming. Int J Production Economics 58:277–287

    Google Scholar 

  • Siddique R, Klaus J (2009) Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 43:392–400

    CAS  Google Scholar 

  • Siddique R, Naik TR (2004) Properties of concrete containing scrap-tire rubber—an overview. Waste Manag 24:563–569

    CAS  Google Scholar 

  • Siddique R, Khatib J, Kaur I (2008) Use of recycled plastic in concrete: a review. Waste Manag 28:1835–1852

    CAS  Google Scholar 

  • Soroushian P, Ravanbakhsh S, Nagi MA (2003) Laboratory evaluation and field application of concrete reinforced with aramid fiber-reinforced polymer bars. ACI Mater J 99:584–590

    Google Scholar 

  • Spoo J, Elsner P (2001) Cement burns: a review 1960–2000. Contact Dermatiti 4:68–71

    Google Scholar 

  • Srogi K (2008) Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: a review. Environ Chem Lett 6:1–28

    CAS  Google Scholar 

  • Sun Y, Zhuang G, Wang Y, Han L, Guo J, Dan M, Zhang W, Wang Z, Hao Z (2004) The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmospheric Environ 38:5991–6004

    CAS  Google Scholar 

  • Suresh AK, Ghoroi C (2009) Solid-solid reactions in series: a modeling and experimental study. AIChE J 55:2399–2413

    CAS  Google Scholar 

  • Szabó L, Hidalgo I, Ciscar JC, Soria A (2006) CO2 emission trading within the European Union and Annex B countries: the cement industry case. Energy Policy 34:72–87

    Google Scholar 

  • Tafunell X (2007) On the origins of ISI: the Latin American cement industry, 1900–1930. J Lat Amer Stud 39:299–328

    Google Scholar 

  • Tam VWY, Tam CM (2006) A review on the viable technology for construction waste recycling. Resources Conserv Recycling 47:209–221

    Google Scholar 

  • Tang KM, Nace CG, Lynes CL, Maddaloni MA, Laposta D, Callahan KC (2004) Characterization of background concentrations in Upper Manhattan, New York apartments for select contaminants identified in world trade center dust. Environ Sci Technol 38:6482–6490

    CAS  Google Scholar 

  • Taylor FW (1997) Cement chemistry. Academic Press, London

    Google Scholar 

  • Thomas Edsison papers. Available at: http://edison.rutgers.edu/cemepats.htm. Accessed April 26 2010

  • Tian B, Cohen MD (2000) Does gypsum formation during sulfate attack on concrete lead to expansion? Cem Concr Res 30:117–123

    CAS  Google Scholar 

  • Trtnik G, Kavčič F, Turk G (2008) The use of artificial neural networks in adiabatic curves modeling. Automation in Construction 18:10–15

    Google Scholar 

  • Turatsinze A, Bonnet S, Granju J-L (2007) Potential of rubber aggregates to modify properties of cement based-mortars: Improvement in cracking shrinkage resistance. Constr Build Mater 21:176–181

    Google Scholar 

  • Turki M, Bretagne E, Rouis MJ, Quéneudec M (2009) Microstructure, physical and mechanical properties of mortar–rubber aggregates mixtures. Constr and Build Mat 23:2715–2722

    Google Scholar 

  • Türkmenoğlu AG, Yavuz-Işıkli N (2008) Mineralogy, chemistry and potential utilization of clays from coal deposits in the Kütahya province, Western Turkey. Applied Clay Sci 42:63–73

    Google Scholar 

  • US Department of Interior, US Geological Survey (2007) Mineral Commodities Summaries 2007, available at: http://minerals.usgs.gov/minerals/pubs/mcs/

  • van Berlo D, Haberzettl P, Gerloff K, Li H, Scherbart AM, Albrecht C, Schins RPF (2009) Investigation of the cytotoxic and proinflammatory effects of cement dusts in rat alveolar macrophages. Chem Re Toxicol 22:1548–1558

    Google Scholar 

  • van Loo W (2008) Dioxin/furan formation and release in the cement industry. Environ Toxicol Pharmacol 25:128–130

    Google Scholar 

  • van Oss HG, Padovani AC (2002) Cement manufacture and the environment, part 1 chemistry and technology. J Industrial Ecology 6:89–105

    Google Scholar 

  • Velosa AL, Cachim PB (2009) Hydraulic-lime based concrete: strength development using a pozzolanic addition and different curing conditions. Constr Build Mat 23:2107–2111

    Google Scholar 

  • Wallevik JE (2009) Rheological properties of cement paste: thixotropic behavior and structural breakdown. Cem Concr Res 39:14–29

    CAS  Google Scholar 

  • Worrell E, Price L, Martin N, Hendriks C, Meida LO (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329

    Google Scholar 

  • Xiao J, Cai BR (1995) Classification and specificity of cement burns. Burns 21:136–138

    CAS  Google Scholar 

  • Yasuhara A, Katami T (2007) Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator. Waste Manag 27:439–447

    CAS  Google Scholar 

  • Young JF, Mindess S (1981) Concrete. Prentice-Hall, New Jersey

    Google Scholar 

  • Zaki NG, Khattab IA, El-Monem NBA (2007) Removal of some heavy metals by CKD leachate. J Hazard Mat 147:21–27

    CAS  Google Scholar 

  • Zassa DM, Favero M, Canu P (2010) Two-steps selective thermal depolymerization of polyethylene. 1: feasibility and effect of devolatilization heating policy. J Anal Appl Pyrolysis 87:248–255

    Google Scholar 

  • Zhang L, Wong MH (2007) Environmental mercury contamination in China: sources and impacts. Environ International 33:108–121

    CAS  Google Scholar 

  • Zhang L, Zhao SXB (2000) The intersectoral terms of trade and their impact on urbanization in China. Post Communist Economies 12:445–462

    Google Scholar 

  • Zhao J, Platt JA, Dong X (2009) Characterization of a novel light-cured star-shape poly(acrylic acid)- composed glass-ionomer cement: fluoride release, water sorption, shrinkage, and hygroscopic expansion. European J Oral Sciences 117:755–765

    CAS  Google Scholar 

  • Živica V (2000) Properties of blended sulfoaluminate belite cement. Constr Build Mat 14:433–437

    Google Scholar 

  • Zoeteman BCJ, Krikke HR, Venselaar J (2009) Handling WEEE waste flows: on the effectiveness of producer responsibility in a globalizing world. Int J Adv Manufacturing Tech 47:415–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, F.A., Joekes, I. Cement industry: sustainability, challenges and perspectives. Environ Chem Lett 9, 151–166 (2011). https://doi.org/10.1007/s10311-010-0302-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-010-0302-2

Keywords

Navigation