Skip to main content

Advertisement

Log in

Assessing natural hazards in forestry for risk management: a review

  • Review
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

We address the problem of how to integrate risk assessment into forest management and therefore provide a comprehensive review of recent and past literature on risk analysis and modeling and, moreover, an evaluation and summary on these papers. We provide a general scheme on how to integrate concepts of risk into forest management decisions. After an overview of the risk management process and the main hazards in forests (storm, snow, insects, fire), the paper focuses on the principal methods used to assess risks from these hazards for commercial forestry. We review mechanistic models, empirical models, and expert systems and consider the needs for different spatial scales of risk assessment, from the regional to the single-tree level. In addition to natural hazards and their secondary effects, we deal with economic aspects of risk analysis. Monte Carlo simulations to deal with volatile timber prices and ways to include risk in classical Faustmann approaches are briefly discussed along with the integration of portfolio theory into forest management decision making and attitude toward risk. Special attention is paid to the implications for risk modeling under climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aldinger E, Seemann D, Konnert V (1996) Wurzeluntersuchungen auf Sturmwurfflächen 1990 in Baden-Württemberg. Mitt. Ver. Forstl. Standortskunde. u. Forstpflanzenzüchtung 38:11–24

    Google Scholar 

  • Abetz P, Kramer H (1976) Contributions to our knowledge on the growth of trees: the height/diameter ratio is more than a measure of slenderness. Forst und Holzwirt 31:389–393

    Google Scholar 

  • Achim A, Ruel J-C, Gardiner BA, Laflamme G, Meunier S (2005) Modelling the vulnerability of balsam fir forests to wind damage. For Ecol Manag 204:35–50

    Google Scholar 

  • Agster W, Ruck B (2003) The influence of aerodynamic properties of forest edges and stands on the pressure pattern within a forest. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Wind effects on trees, Karlsruhe, pp 25–32

  • Albrecht A (2009) Sturmschadensanalysen langfristiger waldwachstumskundlicher Versuchsflächendaten in Baden-Württemberg. PhD-thesis. Albert-Ludwigs Universität, Freiburg, 170 pp

  • Albrecht A, Schindler D, Grebhan K, Kohnle U, Mayer H (2009) Sturmaktivität über der nordatlantisch-europäischen Region vor dem Hintergrund des Klimawandels–eine Literaturübersicht. Allg Forst Jagdzeitung 180:347–360

    Google Scholar 

  • Amacher GS, Malik AS, Haight RG (2005) Not getting burned: the importance of fire prevention in forest management. Land Econ 81:284–302

    Google Scholar 

  • Ancelin P, Courbaud B, Fourcaud T (2004) Development of an individual tree-based mechanical model to predict wind damage within forest stands. For Ecol Manag 203:101–121

    Google Scholar 

  • Andrews PL (2007) BehavePlus fire modeling system: past, present, and future. Proceedings of 7th symposium on fire and forest meteorological society, Bar Harbor, Maine, 23–25 Oct 2007

  • Anselin L (1988) Spatial econometrics–studies in operational regional science. Kluwer, Dordrecht 284 pp

  • Baier P, Pennerstorfer J, Schopf A (2008) PHENIPS—a comprehensive phenology model for risk assessment of outbreaks of the European spruce bark beetle, Ips typographus (L.) (Col., Scolytidae). For Ecol Manag 249:171–186

    Google Scholar 

  • Bannock G, Baxter RE, Rees R (1979) The penguin dictionary of economics, 2nd edn. Penguin Books, New York 467 pp

    Google Scholar 

  • Bebi P, Kulakowski D, Veblen T (2003) Interaction between fire and spruce beetles in a subalpine Rocky Mountain Forest Landscape. Ecology 84:362–371

    Google Scholar 

  • Beck S (2005) Ein Konzept zur automatischen Lösung von Entscheidungsproblemen bei Unsicherheit mittels der Theorie der unscharfen Mengen und der Evidenztheorie. Schriftenreihe des Instituts für Angewandte Informatik/Automatisierungstechnik TH Karlsruhe Band 1 Universitätsverlag Karlsruhe, 249 pp

  • Becker T, Schröter H, Weigerstorfer D, Veit H (eds) (2004) Waldschutzprobleme nach “Lothar”. Sturm “Lothar”–Bewältigung der Sturmschäden in den Wäldern Baden-Württembergs. Landesforstverwaltung Baden-Württemberg, Stuttgart

    Google Scholar 

  • Beinhofer B (2008) Zum optimalen Einschlagszeitpunkt von Fichtenbeständen. Allg Forst Jagdzeitung 179:121–132

    Google Scholar 

  • Berger F, Dorren L (2007) Principles of the tool Rockfor NET for quantifying the rockfall hazard below a protection forest. Schweiz Z Forstwes (Swiss For J) 158:157–165

    Google Scholar 

  • Blennow K, Olofsson E (2008) The probability of wind damage in forestry under a changed wind climate. Clim Change 87:347–360

    Google Scholar 

  • Blennow K, Sallnäs O (2004) WINDA A system of models for assessing the probability of wind damage to forest stands within a landscape. Ecol Model 175:87–99

    Google Scholar 

  • Bogenschütz H, Schwartz G, Limberger S (1986) Auftreten und Bekämpfung des Eichenprozessionsspinners, Thaumetopoea processionea L., in Südwestdeutschland 1986 bis 1988. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft 245:427–428

    Google Scholar 

  • Bolte A, Ibisch P, Menzel A, Rothe A (2008) Anpassung der Wälder an den Klimawandel–Was Klimahüllen uns verschweigen. Allg Forst Jagdzeitung 63:800–803

    Google Scholar 

  • Brasier CM, Jung T (2003) Progress in understanding phytophthora diseases of trees in Europe. In: McComb J, Hardy G, Tommerup I (eds) Phytophthora in forests and natural ecosystems, pp 4–18. Murdoch University Print, 148 pp, Perth

  • Browne WJ, Subramanian SV, Jones K, Goldstein H (2005) Variance partitioning in multilevel logistic models that exhibit overdispersion. J Roy Stat Soc 168:599–613

    Google Scholar 

  • Brüchert F, Gardiner BA (2006) The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am J Bot 93:1512–1521

    PubMed  Google Scholar 

  • Brüchert F, Becker G, Speck T (2000) The mechanics of Norway Spruce [Picea abies (L.) Karst]: mechanical properties of standing trees from different thinning regimes. For Ecol Manag 135:45–62

    Google Scholar 

  • Brunet Y, Fourcaud T, Achim A, Belcher R (2003) The VENFOR project: wind and forest interactions from the tree scale to the landscape scale. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Wind effects on trees, Karlsruhe, pp 3–8

  • Brunette M (2009) Risques naturels, prévention et couverture: une application au secteur forestier. PhD-thesis. Université Nancy II, 287 pp

  • Brunette M, Couture S (2008) Public compensation for windstorm damage reduces incentives for risk management investments. For Policy Econ 10:491–499

    Google Scholar 

  • Brunette M, Cabantous L, Couture S, Stenger A (2008) Insurance demand for disaster-type risks and attitudes towards risk and ambiguity: an experimental study. Economie et Prévision (submitted)

  • Chen JM, Black TA, Novak MD, Adams RS (1995) A wind tunnel study of turbulent airflow in forest clearcuts. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 71–87

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Oge′ J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend A, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival J, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana J, Sanz M, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    PubMed  CAS  Google Scholar 

  • Collett D (2003) Modelling binary data, 2nd edn. Chapman Hall/CRC, Boca Raton

    Google Scholar 

  • Cordonnier T, Courbaud B, Berger F, Franc A (2008) Permanence of resilience and protection efficiency in mountain Norway spruce forest stands: a simulation study. For Ecol Manag doi: 10.1016/j.foreco.2008.04.028

  • Cremer KW, Borough CJ, McKinnel FH, Carter PR (1982) Effects of stocking and thinning on wind damage in plantations. N Z J Forest Sci 12:244–268

    Google Scholar 

  • Cucchi V, Stokes A, Meredieu C, Berthier S, Najar M, Bert D (2003) Root anchorage of Maritime pine (Pinus pinaster Ait.) growing in different soil conditions. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Wind effects on trees, Karlsruhe, pp 307–314

  • Cucchi V, Meredieu C, Stokes A, Coligny FD, Suarez J, Gardiner BA (2005) Modelling the windthrow risk for simulated forest stands of maritime pine (pinus pinaster Ait.). For Ecol Manag 2005:184–196

    Google Scholar 

  • Dale V, Joyce L, McNulty S, Neilson R, Ayres M, Flannigan M, Hanson P, Irland L, Lugo A, Peterson CJ, Simberloff D, Swanson F, Stocks B, Wotton M (2001) Climate change and forest disturbances. Bioscience 51:723–734

    Google Scholar 

  • Dasgupta P (2008) Discounting climate change. J Risk Uncertain 37:141–169

    Google Scholar 

  • Deegen P, Hung BC, Mixdorf U (1997) Economic modelling for choosing tree species under uncertain temperature trends. Forstarchiv 68: 5, 194–205. 25 ref

    Google Scholar 

  • Dieter M (2001) Land expectation values for spruce and beech calculated with Monte Carlo modelling techniques. For Policy Econ 2:157–166

    Google Scholar 

  • Dieter M, Moog M, Borchert H (2001) Einbeziehung von Kalamitätsrisiken bei waldbaulichen und forstbetrieblichen Entscheidungen. In: Gadow KV (ed) Risk analysis in forest management. Kluwer, Dordrecht

    Google Scholar 

  • Dobbertin M (2002) Influence of stand structure and site factors on wind damage comparing the storms Vivian and Lothar. For Snow Landsc Res 77(1/2):187–205

    Google Scholar 

  • Dobbertin M, Biging G (1998) Using the non-parametric classifier CART to model forest tree mortality. For Sci 44:507–516

    Google Scholar 

  • Dobbertin M, Seifert H, Schwyzer A (2002) Ausmass der Sturmschäden. Wald Holz 2002:39–42

    Google Scholar 

  • Donovan GH, Brown TC (2007) Be careful what you wish for: the legacy of Smokey Bear. Front Ecol Environ 5:73–79

    Google Scholar 

  • Dunham RA, Cameron AD (2000) Crown, stem and wood properties of wind-damaged and undamaged Sitka Spruce. For Ecol Manag 135:73–81

    Google Scholar 

  • Dupont S, Brunet Y (2008) Impact of forest edge shape on tree stability: a large-eddy simulation study. Forestry 81:299–315

    Google Scholar 

  • Ehle DS, Baker WL (2003) Disturbance and stand dynamics in Ponderosa pine forests in Rocky Mountain National Park, USU. Ecol Monogr 73:543–566

    Google Scholar 

  • Ehrlich I, Becker G (1972) Market insurance, self-insurance and self-protection. J Polit Econ 80:623–648

    Google Scholar 

  • Elie J-G, Ruel JC (2005) Windthrow hazard modelling in boreal forests of black spruce and jack pine. Can J For Res 35:2655–2663

    Google Scholar 

  • Elith J, Graham C, Anderson R, Dudik M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick J, Lehmann A, Li J, Lohmann L, Loiselle B, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton J, Soberon J, Williams S, Wisz M, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Google Scholar 

  • EPPO (2009) European and Mediterranean plant protection organization. http://www.eppo.org/

  • Finney MA (1998) FARSITE: Fire area simulator-model development and evaluation. Res. Pap. RMRS-RP-4, Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station 47

  • Finney MA, Britten S, Seli R (2003) FlamMap2 Beta Version 3.0.1. Fire Sciences Lab and Systems for Environmental Management, Missoula, Montana

  • Frankel SJ, Kliejunas JT, Palmieri KM (2008) Proceedings of the sudden oak death third science symposium. Gen. Tech. Rep. PSW-GTR-214. Albany, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station 491

  • Fraser AI (1964) Wind tunnel and other related studies on coniferous trees and tree crops. Scott For 18:84–92

    Google Scholar 

  • Fridman J, Valinger E (1998) Modelling probability of snow and wind damage using tree, stand, and site characteristics from Pinus sylvestris sample plots. Scand J For Res 13:348–356

    Google Scholar 

  • FVA (2003) Dokumentation des Orkanereignisses “Lothar” sowie Auswertung und Evaluierung der Sturmschadensbewältigung. 369, Forest Research Institute of Baden-Württemberg, Freiburg

  • Gadow KV (2000) Evaluating risk in forest planning models. Silva Fennica 34:181–191

    Google Scholar 

  • Gardiner BA (1995) The interactions of wind and tree movement in forest canopies. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 41–59

    Google Scholar 

  • Gardiner B, Quine C (2000) Management of forests to reduce the risk of abiotic damage–a review with particular reference to the effects of strong winds. For Ecol Manag 135:261–277

    Google Scholar 

  • Gardiner BA et al (1997) Field and wind tunnel assessments of the implications of respacing and thinning for tree stability. Forestry 70:233–252

    Google Scholar 

  • Gardiner B, Peltola H, Kellomäki S (2000) Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol Model 29:1–23

    Google Scholar 

  • Gardiner B, Byrne K, Hale S, Kamimura K, Mitchell S, Peltola H, Ruel JC (2008) A review of mechanistic modelling of wind damage risk to forests. Forestry 81:447–461

    Google Scholar 

  • Gonzalez JR, Palahi M, Pukkala T (2005) Integrating fire risk considerations in forest management planning in Spain–a landscape level perspective. Landscape Ecol 20:957–970

    Google Scholar 

  • Gonzalez JR, Palahi M, Trasobares A, Pukkala T (2006) A fire probability model for forest stands in Catalonia (north-east Spain). Ann For Sci 63:169–176

    Google Scholar 

  • Gromke C, Ruck B (2008) Aerodynamic modelling of trees for small-scale wind tunnel studies. Forestry 81:243–258

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Guitard DGE, Castera P (1995) Experimental analysis and mechanical modelling of wind-induced tree sways. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 182–194

  • Haimes YY (2004) Risk modeling, assessment, and management, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Hanewinkel M (2005) Neural networks for assessing the risk of windthrow on the forest division level: a case study in southwest Germany. Eur J Forest Res 124:243–249

    Google Scholar 

  • Hanewinkel M, Zhou W, Schill C (2004) A neural network approach to identify forest stands susceptible to wind damage. For Ecol Manag 196:227–243

    Google Scholar 

  • Hanewinkel M, Breidenbach J, Neeff T, Kublin E (2008) 77 years of natural disturbances in a mountain forest area–the influence of storm, snow and insect damage analysed with a long-term time-series. Can J For Res 38:2249–2261

    Google Scholar 

  • Hautala H, Vanha-Majamaa I (2006) Immediate tree uprooting after retention-felling in a coniferous boreal forest in Fennoscandia. Can J For Res 36:3167–3172

    Google Scholar 

  • Heikkinen R, Luoto M, Araújo M, Virkkala R, Thuiller W, Sykes M (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Google Scholar 

  • Heiniger U (2003) Das Risiko eingeschleppter Pilzkrankheiten für Waldbäume. Schweiz Z Forstwes (Swiss For J) 154:410–414

    Google Scholar 

  • Heinimann HR (2002) Risk management–a framework to improve effectiveness and efficiency of resource management decisions. In: Greminger P (eds) 23rd Session of the European Forestry Commission’s Working Party on the Management of Mountain Watersheds,. BUWAL., Davos, Switzerland, Sep 16–19

  • Hessl AE, McKenzie D, Schellhass R (2004) Drought and pacific decadal oscillation linked to fire occurrence in the inland pacific Northwest. Ecol Appl 14:425–442

    Google Scholar 

  • Hinrichs A (1994) Geographische Informationssysteme als Hilfsmittel der forstlichen Betriebsführung (Geographical Information Systems as Tool for Forest Management–PhD-thesis). PhD. Albert-Ludwigs-Universität, Freiburg

  • Holecy J, Hanewinkel M (2006) A forest management risk insurance model and its application to coniferous stands in southwest Germany. For PolicyEcon 8:161–174

    Google Scholar 

  • Holthausen N (2004) Ökonomische Bedeutung und Management von Naturrisiken im Wald. Theoretische Grundlagen und empirische Analysen nach dem Sturm Lothar (1999) in der Schweiz. Schriftenreihe des Instituts für Forstökonomie, Universität Freiburg 26: 121

  • Holthausen N, Hanewinkel M, Holecy J (2004) Risikomanagement in der Forstwirtschaft am Beispiel des Sturmrisikos. Forstarchiv 75:149–157

    Google Scholar 

  • Hummel S, Donovan GH, Spies TA, Hemstrom MA (2008) Conserving biodiversity using risk management: hoax or hope? Front Ecol Environ 6, doi:10.1890/070111

  • Hütte P (1967) Die standörtlichen Voraussetzungen der Sturmschäden. Forstwiss Centralbl 60:276–295

    Google Scholar 

  • Iliadis LS, Papastavrou AK, Lefakis PD (2002) A computer-system that classifies the prefectures of Greece in forest fire risk zones using fuzzy sets. For Policy Econ 4:43–54

    Google Scholar 

  • Jalkanen A, Mattila U (2000) Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. For Ecol Manag 135:315–330

    Google Scholar 

  • JFSP (2007) Joint fire science program annual report. Available online at www.firescience.gov

  • Kalberer M, Ammann M, Jonsson M (2007) Mechanical properties of Norway spruce: experiments for the analysis of natural hazards. Schweizerische Zeitschrift für das Forstwesen 158:166–175

    Google Scholar 

  • Kamimura K, Gardiner B, Kato A, Hiroshima T, Shiraishi N (2008) Developing a decision support approach to reduce wind damage risk–a case study on sugi (Cryptomeria japonica (L.f.) D.Don) forests in Japan. Forestry doi: 10.1093/forestry/cpn029

  • Kaplan S, Garrick BJ (1980) On the quantitative definition of risk. Risk Anal 1:11–27

    Google Scholar 

  • Kerns BK, Ager A (2007) Risk assessment for biodiversity conservation planning. For Ecol Manag 246:38–44

    Google Scholar 

  • Kilpeläinen A, Gregow H, Strandman H, Kellomäki S, Venäläinen A, Peltola H (2009a) Impacts of climate change on the risk of snow-induced forest damage in Finland. Clim Change 99:193–209

    Google Scholar 

  • Kilpeläinen A, Kellomäki S, Strandman H, Venäläinen A (2009b) Climate change impacts on forest fire potential in boreal conditions in Finland. Clim Change 99 doi 10.1007/s10584-10009-19788-10587

  • Klemperer WD (1994) Forest resource economics and finance. McGraw- Hill

  • Klimetzek D, Yue C (1997) Climate and forest insect outbreaks. Biologia, Bratislava 52:153–157

    Google Scholar 

  • Klocek A, Oesten G (1991) Optimale Umtriebszeit im Normal- und im Zielwaldmodell. Allg For Jagdzeitung 162:92–99

    Google Scholar 

  • Knoke T, Hahn A (2007) Baumartenvielfalt und Produktionsrisiken: Ein Forschungseinblick und -ausblick. Schweiz Z Forstwesen 158:312–322

    Google Scholar 

  • Knoke T, Wurm J (2006) Mixed forests and a flexible harvest policy: a problem for conventional risk analysis. Eur J Forest Res 125:303–315

    Google Scholar 

  • Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. For Ecol Manag 213:102–116

    Google Scholar 

  • Knoke T, Ammer C, Stimm B, Mosandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J Forest Res 127:89–101

    Google Scholar 

  • Koellner T, Schmitz OJ (2006) Biodiversity, ecosystem function, and investment risk. Bioscience 56:977–985

    Google Scholar 

  • Kölling C (2007) Klimahüllen für 27 Baumarten. Allg For Jagdzeitung 62:1242–1245

    Google Scholar 

  • König A (1995) Sturmgefährdung von Beständen im Altersklassenwald. J.D. Sauerländer’s, Frankfurt a. M

    Google Scholar 

  • Kouba J (2002) Das Leben des Waldes und seine Lebensunsicherheit. Forstwissenschaftliches Centralblatt 121:211–228

    Google Scholar 

  • Kulakowski D, Veblen TT, Bebi P (2003) Effects of fire and spruce beetle outbreak legacies on the disturbance regime of a subalpine forest in Colorado. J Biogeogr 30:1445–1456

    Google Scholar 

  • Kurth H, Gerold D, Dittrich K (1987) Reale Waldentwicklung und Zielwald–Grundlagen nachhaltiger Systemregelung des Waldes. Wissenschaftliche Zeitschrift der TU Dresden 36:121–137

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008a) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    PubMed  CAS  Google Scholar 

  • Kurz WA, Stinson G, Rampley G, Dymond CC, Neilson ET (2008b) Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc Natl Acad Sci USA 105:1551–1555

    PubMed  CAS  Google Scholar 

  • Lanquaye-Opoku N, Mitchell SJ (2005) Portability of stand-level empirical windthrow risk models. For Ecol Manag 216:134–148

    Google Scholar 

  • Lekes V, Dandul I (2000) Using airflow modelling and spatial analysis for defining wind damage risk classification (WINDARC). For Ecol Manag 135:331–344

    Google Scholar 

  • Lexer MJ, Hönninger K, Vacik H (2000) Modelling the effect of forest site conditions on the ecophysiological suitability of tree species: an approach based on fuzzy set theory. Comput Electron Agric 27:393–399

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD, Schabenberger O (2006) SAS for mixed models, 2nd edn. SAS Institute Inc., Cary, NC

    Google Scholar 

  • Lohmander P (2000) Optimal sequential forestry decisions under risk. Ann Oper Res 95:217–228

    Google Scholar 

  • Lohmander P, Helles F (1987) Windthrow probability as a function of stand characteristics and shelter. Scand J For Res 2:227–238

    Google Scholar 

  • Maindonald J, Braun J (2007) Data analysis and graphics using R–an example-based approach, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Majunke C, Matz S, Müller M (2008) Sturmschäden in Deutschlands Wäldern von 1920 bis 2007. Allg For Jagdzeitung 63:380–381

    Google Scholar 

  • Mandallaz D, Ye R (1997) Prediction of forest fires with Poisson models. Can J For Res 27:1685–1694

    Google Scholar 

  • Markowitz HM (1952) Portfolio selection. J Finance 7:77–91

    Google Scholar 

  • Markowitz HM (1959) Portfolio selection: efficient diversification of investments. Wiley, New York

    Google Scholar 

  • Mason WL (2002) Are irregular stands more windfirm? Forestry 75:347–355

    Google Scholar 

  • Mayer H (1988) Kartierung von potentiell sturmgefährdeten Waldstandorten in Bayern. Forstwiss Centralbl 107:239–251

    Google Scholar 

  • Mayer PBP, Dobbertin M, Hallenbarter D, Renaud J-P, Walthert L, Zimmermann S (2005) Forest storm damage is more frequent on acidic soils. Ann For Sci 62:303–311

    Google Scholar 

  • McCann R, Marcot B, Ellis R (2006) Bayesian belief networks—applications in ecology and natural resource management. Can J For Res 36:3053–3062

    Google Scholar 

  • Meilby H, Strange N, Thorsen BJ (2001) Optimal spatial harvesting under risk of windthrow. For Ecol Manag 149:15–31

    Google Scholar 

  • Meng SX, Huang S, Lieffers VJ, Nunifu T, Yang Y (2008) Wind speed and crown class influence the height-diameter relationship of lodgepole pine: nonlinear mixed effects modeling. For Ecol Manag 256:570–577

    Google Scholar 

  • Metzler B, Kublin E (2003) Langzeitwirkung von Stubbenbehandlungen auf das Stockfäulerisiko in Fichten-Erstaufforstungen. Allg For Jagdzeitung 174:81–84

    Google Scholar 

  • Mickovski SB, Stokes A, Beek LPH (2005) A decision support tool for windthrow hazard assessment and prevention. For Ecol Manag 216:64–76

    Google Scholar 

  • Miller DR, Dunham R, Broadgate ML, Aspinall RJ, Law ANR (2000) A demonstrator of models for assessing wind, snow and fire damage to forests using the WWW. For Ecol Manag 135:355–363

    Google Scholar 

  • Mills WL Jr, Hoover WL (1982) Investment in forest land: aspects of risk and diversification. Land Econ 58:33–51

    Google Scholar 

  • Milne R (1995) Modelling mechanical stresses in living Sitka spruce stems. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 165–181

    Google Scholar 

  • Mitchell S (1998) A diagnostic framework for windthrow risk estimation. For Chron 74:100–105

    Google Scholar 

  • Mitchell S, Hailemariam T, Kulis Y (2001) Empirical modeling of cutblock edge windthrow risk on Vancouver Island, Canada, using stand level information. For Ecol Manag 154:117–130

    Google Scholar 

  • Mitchell RJ, Palik BJ, Hunter ML (2002) Natural disturbance as a guide to silviculture. For Ecol Manag 155:315–317

    Google Scholar 

  • Moore JR, Mitchell SJ, Maguire DA, Quine C (2003) Wind damage in alternative silvicultural systems. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Wind effects on trees. Laboratory for Buiding- and Environmental Aerodynamics, University of Karlsruhe, Karlsruhe, pp 191–198

    Google Scholar 

  • Morse AP, Brunet Y, Devalance M, Gamboa-Marrufo M, Irvine MR, Marshall BJ, Paw KTU (2003) The venfor project: the role of forest edges in the patterns of turbulence development–findings from a field experiment, wind tunnel experiment and a large eddy simulation model experiment. In: Ruck B, Kottmeier C, Mattheck C, Quine C, Wilhelm G (eds) Wind Effects on Trees, Karlsruhe, pp 33–38

  • Mossin J (1968) Aspects of rational insurance purchasing. J Polit Econ 76:553–568

    Google Scholar 

  • Möykkynen T, Pukkala T (2009) Optimising the management of a Norway spruce stand on a site infected by Heterobasidion coll. Scand J For Res 24:149–159

    Google Scholar 

  • Müller, F. 2002. Modellierung von Sturm-, Schnee- und Rotfäulerisiko in Fichtenbeständen auf Einzelbaumebene. Dissertation. Technische Universität München, Freising

  • Nagel TA, Diaci J (2006) Intermediate wind disturbance in an old-growth beech-fir forest in southeastern Slovenia. Can J For Res 36:629–638

    Google Scholar 

  • Navarro GA (2003) On 189 years of confusing debate over the König-Faustmann Formula. PhD-thesis. Albert-Ludwigs Universität, Freiburg

  • Nelson WA, Potapov A, Lewis MA, Hundsdörfer AE, He F (2008) Balancing ecological complexity in predictive models: a reassessment of risk models in the mountain pine beetle system. J Appl Ecol 45:248–257

    Google Scholar 

  • Netherer S, Nopp-Mayr U (2005) Predisposition assessment systems (PAS) as supportive tools in forest management—rating of site and stand-related hazards of bark beetle infestation in the High Tatra Mountains as an example for system application and verification. For Ecol Manag 207

  • Nicholson W (1995) Microeconomic theory basic principles and extensions. Sixth Edition. Dryden Press. Orlando, p 901

  • Nicoll BC, Achim A, Mochan S, Gardiner BA (2005) Does steep terrain influence tree stability? A field investigation. Can J For Res 2005:2360–2367

    Google Scholar 

  • Nielsen CCN (1990) Einflüsse von Pflanzabstand und Stammzahlhaltung auf Wurzelform, Wurzelbiomasse, Verankerung sowie auf Biomassenverteilung im Hinblick auf die Sturmfestigkeit der Fichte. J. D. Sauerländer’s, Frankfurt a. M

    Google Scholar 

  • Nielsen CCN (1995) Recommendations for stabilisation of Norway spruce stands based on ecological surveys. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 424–435

    Google Scholar 

  • Nilsson C, Stjernquist L, Bärring P, Schlyter AM, Jönsson H, Samuelsson P (2004) Recorded storm damage in Swedish forests 1901–2000. For Ecol Manag 199:165–173

    Google Scholar 

  • Nothdurft A, Kublin E, Lappi J (2006) A non-linear hierarchical mixed model to describe tree height growth. Eur J Forest Res 2006:1–9

    Google Scholar 

  • Nykänen ML, Peltola H, Quine C, Kellomäki S, Broadgate M (1997) Factors affecting snow damage of trees with particular reference to European conditions. Silva Fennica 31:193–213

    Google Scholar 

  • Päätalo M-L (2000) Risk of snow damage in unmanaged and managed stands of scots pine, Norway spruce and birch. Scand J For Res 15:530–541

    Google Scholar 

  • Parker TJ, Clancy KM, Mathiasen RL (2006) Interactions among fire, insects, and pathogens in coniferous forests of the interior western United States and Canada. Agric For Entomol 8:167–189

    Google Scholar 

  • Peltola H, Nykänen M-L, Kellomäki S (1997) Model computations on the critical combination of snow loading and windspeed for snow damage of Scots pine, Norway spruce and birch sp at stand edge. For Ecol Manag 95:229–241

    Google Scholar 

  • Peltola H, Kellomäki S, Väisänen H, Ikonen V-P (1999) A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway Spruce and birch. Can J For Res 29:647–661

    Google Scholar 

  • Peterson CJ (2000) Catastrophic wind damage to North American forests and the potential impact of climate change. Sci Total Environ 262:287–311

    PubMed  CAS  Google Scholar 

  • Petty JA, Worrel R (1981) Stability of coniferous tree stems in relation to damage by snow. Forestry 54:115–128

    Google Scholar 

  • Plattner T (2006) Risikoaversion als relevanter Faktor der Risikobewertung von Naturgefahren. PhD-thesis Nr. 16931- Swiss Federal Institute of Technology (ETH)

  • Pukkala T, Kangas J (1996) A method for integrating risk and attitude toward risk into forest planning. For Sci 42:198–205

    Google Scholar 

  • Quine C (1995) Assessing the risk of wind damage to fests: practice and pitfalls. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 379–403

    Google Scholar 

  • Radeloff VC, Mladenoff DJ, Boyce MS (2000) Effects of interacting disturbances on landscape patterns: budworm defoliation and salvage logging. Ecol Appl 10:233–247

    Google Scholar 

  • Reed WJ (1984) The effects of the risk of fire on the optimal rotation of a forest. J Environ Econ Manage 11:180–190

    Google Scholar 

  • Rollins MGF, Christine K (2006) The LANDFIRE Prototype Project: nationally consistent and locally relevant geospatial data for wildland fire management. Gen. Tech. Rep. RMRS-GTR-175. Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p 416

  • Roloff A, Grundmann B (2008) Bewertung von Waldbaumarten anhand der KlimaArtenMatrix. Allg Forstzeitschrift 63:1086–1088

    Google Scholar 

  • Romme WH (1982) Fire and landscape diversity in subalpine forests. Ecol Monogr 52:199–221

    Google Scholar 

  • Rottmann M (1985) Schneebruchschäden in Nadelholzbeständen. J.D. Sauerländer’s, Frankfurt a.M

    Google Scholar 

  • Rottmann M (1986) Wind- und Sturmschäden im Wald. J.D. Sauerländer’s, Frankfurt a.M

    Google Scholar 

  • Saidani N (2004) Erkennung von Sturmschäden im Wald auf der Basis kleinmaßstäbiger Luftbilder und Entwicklung eines Modells zur Abschätzung der Sturmgefährdung der Wälder auf der Basis von räumlichen Daten. Dissertation. Universität Freiburg, Freiburg

  • Samuelson PA (2008) Asymmetric or symmetric time preference and discounting in many facets of economic theory: a miscellany. J Risk Uncertain 37:107–114

    Google Scholar 

  • Sandman P (1987) Risk communication: facing public outrage. EPA J 13:21–22

    Google Scholar 

  • Schelhaas MJ, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Chang Biol 9:1620–1633

    Google Scholar 

  • Schelhaas MJ, Kramera K, Peltola H, van der Werf DC, Wijdeven SMJ (2007) Introducing tree interactions in wind damage simulation. Ecol Model

  • Schmid-Haas P, Bachofen H (1991) Die Sturmgefährdung von Einzelbäumen und Beständen. Schweizerische Zeitschrift für das Forstwesen 142:477–504

    Google Scholar 

  • Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2009) An inventory-based approach for modeling single tree storm damage–experiences with the winter storm 1999 in southwestern Germany. Can J For Res (in review)

  • Schmoeckel J (2005) Orographischer Einfluss auf die Strömung abgeleitet aus Sturmschäden im Schwarzwald während des Orkans “Lothar”. Dissertation. Universität Karlsruhe, Karlsruhe

  • Schütz JP, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302

    Google Scholar 

  • Schwarzbauer P (2006) Einflüsse von schadholzmengen auf rohholzpreise. Eine quantitativ-statistische Analyse am Beispiel Österreichs. Allg For Jagdzeitung 178:1–7

    Google Scholar 

  • Scott RE, Mitchell SJ (2005) Empirical modelling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. For Ecol Manag 218:193–209

    Google Scholar 

  • Seidl R, Baier P, Rammera W, Schopf A, Lexer MJ (2007) Modelling tree mortality by bark beetle infestation in Norway spruce forests. Ecol Modell 206:383–399

    Google Scholar 

  • Seymour RS (2002) Natural disturbance regimes in northeastern North America–evaluating silvicultural systems using natural scales and frequencies. For Ecol Manag 155:357–367

    Google Scholar 

  • Shafer G (1976) A mathematical theory of evidence. Princeton University Press

  • Shea N (2008) Under fire. National Geographic, July

  • Singer J (1998) Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. J Educ Behav Stat 24:323–355

    Google Scholar 

  • Slodicák M (1995) Thinning regime in stands of Norway spruce subjected to snow and wind damage. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 436–447

    Google Scholar 

  • Slodicak M, Novak J (2006) Silvicultural measures to increase the mechanical stability of pure secondary Norway spruce stands before conversion. For Ecol Manag 224:252–257

    Google Scholar 

  • Spiecker H, Hansen J, Klimo E, Skovsgaard J, Sterba H, von Teuffel K (eds) (2004) Norway spruce conversion: options and consequences. European Forest Institute, Research Report 18. S. Brill, Leiden, Boston, Köln

  • Spies TA, Hemstrom MA, Youngblood A, Hummel S (2006) Conserving old growth forest diversity in disturbance-prone landscapes. Cons Biol 20:351–362

    Google Scholar 

  • Sutherst R, Maywald G, Bottomley W (2009) From CLIMEX to PESKY, a generic expert system for pest risk assessment. EPPO Bulletin 21:595–608

    Google Scholar 

  • Suzuki T (1971) Forest transition as a stochastic process. Mitt Forstlichen Bundesversuchsanstalt (FBVA) 91:137–150

    Google Scholar 

  • Swetnam TW, Betancourt JL (1998) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J Clim 11:3128–3147

    Google Scholar 

  • Tahvonen O, Viitala EJ (2007) Faustmann rotation apply to fully regulated forests? For Sci 52:23–30

    Google Scholar 

  • Talkkari A, Peltola H, Kellomäki S, Strandmann H (2000) Integration of component models from the tree, stand and regional levels to assess the risk of wind damage at forest margins. For Ecol Manag 135:303–313

    Google Scholar 

  • Teeter L, Caulfield J (1991) Stand density management strategies under risk: effects of stochastic prices. Can J For Res 21:1373–1379

    Google Scholar 

  • Therneau TM, Atkinson B (2002) Recursive partitioning and regression trees, R package, R port by Brian Ripley

  • Thorsen BJ, Helles F (1998) Optimal stand management under risk of sudden destruction. For Ecol Manag 108:287–299

    Google Scholar 

  • Thuiller W (2007) Climate change and the ecologist. Nature 448:550–552

    PubMed  CAS  Google Scholar 

  • Thuiller W, Albert C, Araujo M, Berry P, Cabeza M, Guisan A, Hickler T, Midgley G, Paterson J, Schurr F, Sykes M, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Google Scholar 

  • Tobin J (1958) Liquidity preferences as a behavior towards risk. Rev Econ Stud 25:65–86

    Google Scholar 

  • Valinger E, Fridman J (1997) Modeling probability of snow and wind damage in Scots pine stands using tree characteristics. For Ecol Manag 97:215–222

    Google Scholar 

  • Valinger E, Fridman J (1999) Models to assess the risk of snow and wind damage in pine, spruce and birch forests in Sweden. Environ Manage 24:209–217

    PubMed  Google Scholar 

  • Valinger E, Lundqvist L (1992) The influence of thinning and nitrogen fertilisation on the frequency of snow and wind induced stand damage in forests. Scott For 46:311–320

    Google Scholar 

  • Veblen TT, Hadley KS, Nel EM, Kitzberger T, Reid M, Villalba R (1994) Disturbance regime and disturbance interactions in a Rocky Mountain subalpine forest. J Ecol 82:125–135

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Google Scholar 

  • Viscusi WK, Huber J, Bell J (2008) Estimating discount rates for environmental quality from utility-based choice experiments. J Risk Uncertain 37:199–220

    Google Scholar 

  • Wagner C (1928) Lehrbuch der theoretischen Forsteinrichtung, Berlin

  • Wangler F (1974) Die Sturmgefährdung der Wälder in Südwestdeutschland–Eine waldbauliche Auswertung der Sturmkatastrophe 1967. Dissertation. Universität Freiburg

  • Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) (1998) Heterobasidion Annosum. Biology, ecology, impact and control. CAB International

  • Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Google Scholar 

  • Zhu J-j, Li X-f, Liu Z-g, Cao W, Gonda Y, Matsuzake T (2006) Factors affecting the snow and wind induced damage of a montane secondary forest in northeastern China. Silva Fenn 40:37–51

    Google Scholar 

  • Zimmermann NE, Bugmann H (2008) Die Kastanie im Engadin–oder was halten Baumarten von modellierten Potenzialgebieten. Schweiz Z Forstwes (Swiss For J) 159:326–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Hanewinkel.

Additional information

Communicated by M. Moog.

This is one in a series of articles dedicated to Prof. Dr. Dr. h.c. Gerhard Oesten on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanewinkel, M., Hummel, S. & Albrecht, A. Assessing natural hazards in forestry for risk management: a review. Eur J Forest Res 130, 329–351 (2011). https://doi.org/10.1007/s10342-010-0392-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-010-0392-1

Keywords

Navigation