Skip to main content

Advertisement

Log in

Evaluation of the consistency of landslide susceptibility mapping: a case study from the Kankai watershed in east Nepal

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

GIS-based landslide susceptibility maps for the Kankai watershed in east Nepal are developed using the frequency ratio method and the multiple linear regression technique. The maps are derived from comparing observed landslides with possible causative factors: slope angle, slope aspect, slope curvature, relative relief, distance from drainage, land use, geology, distance from faults and mean annual rainfall. The consistency of the maps is evaluated using landslide density analysis, success rate analysis and spatially agreed area approach. The first two analyses produce almost identical quantitative results, whereas the last approach is able to reveal spatial differences between the maps and also to improve predictions in the agreed high landslide-susceptible area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary, review and new perspectives. Bull Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Process Landf 26(12):251–1263

    Article  Google Scholar 

  • Bijukchhen SM, Kayastha P, Dhital MR (2012) A comparative evaluation of heuristic and bivariate statistical modelling for landslide susceptibility mappings in Ghurmi–Dhad Khola, east Nepal. Arab J Geosci. doi:10.1007/s12517-012-0569-7

  • Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. Fourth Int Symp Landslides Can Geotech Soc Tor Can 1:307–324

    Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. Math Geol 15(3):403–426

    Article  Google Scholar 

  • Çevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44:949–962

    Article  Google Scholar 

  • Chalise SR (2001) An introduction to climate, hydrology, and landslide hazards in the Hindu Kush–Himalayan region. In: Tianchi L, Chalise SR, Upreti BN (eds) Landslide hazard mitigation in the Hindu Kush–Himalayas. ICIMOD, Kathmandu, pp 51–62

    Google Scholar 

  • Chung CF, Fabbri AG (1993) Representation of geoscience information for data integration. Nat Resour Res 2(2):122–139

    Article  Google Scholar 

  • Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogram Eng Remote Sens 65(12):1389–1399

    Google Scholar 

  • Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kulwer Academic, Dordrecht, pp 107–133

    Chapter  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides—investigation and mitigation. Special report 247, Transportation Research Board, National Research Council, pp 36–75

  • Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008) Predictive modeling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102:496–510

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS Lantau Island, Hong Kong. Geomorphology 42:213–238

    Article  Google Scholar 

  • Dai FC, Lee CF, Li J, Xu ZW (2001) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391

    Article  Google Scholar 

  • Deoja BB, Dhital MR, Thapa B, Wagner A (1991) Mountain risk engineering handbook. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, p 875

    Google Scholar 

  • Dhakal AS, Amada T, Aniya M (2000) Landslide hazard mapping and its evaluation using GIS: an investigation of sampling schemes for a grid-cell based quantitative method. Photogram Eng Remote Sens 66(8):981–989

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ, JTC-1 Joint Technical Committee on Landslides and Engineered Slope (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Ghosh S, van Westen CJ, Carranza EJM, Ghosal TB, Sarkar NK, Surendranath M (2009) A quantitative approach for improving the BIS (Indian) method of medium-scale landslide susceptibility. J Geol Soc India 74:625–638

    Article  Google Scholar 

  • Ghosh S, Günther A, Carranza EJM, van Westen CJ, Jetter VG (2010) Rock slope instability assessment using spatially distributed structural orientation data in Darjeeling Himalaya (India). Earth Surf Process Landf 35(15):1773–1792

    Article  Google Scholar 

  • Gupta RP, Kanungo DP, Arora MK, Sarkar S (2008) Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int J App Earth Obs Geoinf 10:330–341

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Hagen T (1969) Report on the geological survey of nepal, vol. 1. Preliminary reconnaissance. Mém De La Soc Helvétique Des Sci Nat 86(1):1–185

    Google Scholar 

  • Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, pp 523–602

    Google Scholar 

  • Hutchinson JN (1995) Keynote paper: Landslide hazard assessment. In: Bell DH (ed) Landslides. Balkema, Rotterdam, pp 1805–1841

    Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2006) A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol 85:347–366

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Gupta RP, Sarkar S (2008) Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides 5:407–416

    Article  Google Scholar 

  • Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk: Assess Manag Risk Eng Syst Geohazards 3(1):30–43

    Article  Google Scholar 

  • Kayastha P, De Smedt F, Dhital MR (2010) GIS based landslide susceptibility assessment in Nepal Himalaya: a comparison of heuristic and statistical bivariate analysis. In: Malet JP, Glade T Casagli N (eds) Mountain risks: bringing science to society. CERG Editions, pp 121–128

  • Kayastha P, Dhital MR, De Smedt F (2012) Landslide susceptibility mapping using the weight of evidence method in the Tinau watershed, Nepal. Nat Hazards 63(2):479–498

    Article  Google Scholar 

  • Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manag 34(2):223–232

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131

    Article  Google Scholar 

  • Oguchi T (1997) Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Process Landf 22(2):107–120

    Article  Google Scholar 

  • Ohlmacher CG, Davis CJ (2003) Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69:331–343

    Article  Google Scholar 

  • Poudyal CP, Chang C, Oh H, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61:1049–1064

    Article  Google Scholar 

  • Reger JP (1979) Discriminant analysis as a possible tool in landslide investigations. Earth Surf Process Landf 4(3):267–273

    Google Scholar 

  • Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogram Eng Remote Sens 70(5):617–625

    Article  Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK, Kumar P (2006) GIS based landslide susceptibility mapping—a case study in Indian Himalaya. In: Marui H et al (eds) Disaster mitigation of debris flows, slope failures and landslides. Universal Academy, Tokyo, pp 617–624

    Google Scholar 

  • Sarkar S, Kanungo DP, Patra AK, Kumar P (2008) GIS based spatial data analysis for landslide susceptibility analysis. J Mt Sci 5:52–62

    Article  Google Scholar 

  • Sharma CK (1990) Geology of Nepal Himalaya and adjacent countries. Sangeeta Sharma, Kathmandu, p 479

    Google Scholar 

  • Thapa PB, Dhital MR (2000) Landslide and debris flows of 19–21 July 1993 in the Agra Khola watershed of central Nepal. J Nepal Geol Soc 21:5–20

    Google Scholar 

  • Upreti BN, Dhital MR (1996) Landslide studies and management in Nepal. ICIMOD, Nepal, p 87

    Google Scholar 

  • Uromeihy A, Mahdavifar MR (2000) Landslide hazard zonation of the Khorshrostam area, Iran. Bull Eng Geol Environ 58:207–213

    Article  Google Scholar 

  • van Westen C (1997) Statistical landslide hazard analysis ILWIS 2.1 for Windows application guide. ITC, Enschede, pp 73–84

    Google Scholar 

  • van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419

    Article  Google Scholar 

  • Varnes DJ (1984) International association of Engineering geology commission on landslides and other mass-movements: Landslide hazard zonation: A review of principles and practice. UNESCO, Paris, p 63

    Google Scholar 

  • Yin KL, Yan TZ (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard C (ed) Proc. 5th Int. Sym. on Landslides, Lausanne. Balkema, Rotterdam, pp 1269–1272

    Google Scholar 

Download references

Acknowledgments

The Department of Survey, the Department of Hydrology and Meteorology and the Department of Mines and Geology, Government of Nepal, provided data used in this study. The Flemish Inter-University Council (VLIR), Belgium, provided a Ph.D. scholarship for the first author to carry out this research. The authors would also like to acknowledge the anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabin Kayastha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayastha, P., Dhital, M.R. & De Smedt, F. Evaluation of the consistency of landslide susceptibility mapping: a case study from the Kankai watershed in east Nepal. Landslides 10, 785–799 (2013). https://doi.org/10.1007/s10346-012-0361-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-012-0361-5

Keywords

Navigation