Skip to main content
Log in

Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Preparation of reliable landslide hazard and risk maps is crucial for hazard mitigation and risk management. In recent years, various approaches have been developed for quantitative assessment of landslide hazard and risk. However, possibly due to the lack of new data, very few of these hazard and risk maps were updated after their first generation. In this study, aiming at an ongoing assessment, a novel approach for updating landslide hazard and risk maps based on Persistent Scatterer Interferometry (PSI) is introduced. The study was performed in the Arno River basin (central Italy) where most mass movements are slow-moving landslides which are properly within the detection precision of PSI point targets. In the Arno River basin, the preliminary hazard and risk assessment was performed by Catani et al. (Landslides 2:329–342, 2005) using datasets prior to 2002. In this study, the previous hazard and risk maps were updated using PSI point targets processed from 4 years (2003–2006) of RADARSAT images. Landslide hazard and risk maps for five temporal predictions of 2, 5, 10, 20 and 30 years were updated with the exposure of losses estimated in Euro (€). In particular, the result shows that in 30 years a potential loss of approximate €3.22 billion is expected due to these slow-moving landslides detected by PSI point targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. B Eng Geol Environ 58:21–44

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE T Geosci Remote 40:2375–2383

    Article  Google Scholar 

  • Bianchini S, Cigna F, Righini G, Proietti C, Casagli N (2012) Landslide HotSpot Mapping by means of Persistent Scatterer Interferometry. Environ Earth Sci 67:1155–1172

    Article  Google Scholar 

  • Blanco-Sanchez P, Mallorqui JJ, Duque S, Monells D (2008) The Coherent Pixels Technique (CPT): an advanced DInSAR technique for nonlinear deformation monitoring. Pure Appl Geophys 165:1167–1193

    Article  Google Scholar 

  • Bovenga F, Nutricato R, Refice A, Wasowski J (2006) Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng Geol 88:218–239

    Article  Google Scholar 

  • Bovenga F, Wasowski J, Nitti DO, Nutricato R, Chiaradia MT (2012) Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis. Remote Sens Environ 119:272–285

    Article  Google Scholar 

  • Bovenga F, Nitti DO, Fornaro G, Radicioni F, Stoppini A, Brigante R (2013) Using C/X-band SAR interferometry and GNSS measurements for the Assisi landslide analysis. Int J Remote Sens 34:4083–4104

    Article  Google Scholar 

  • Calò F, Calcaterra D, Iodice A, Parise M, Ramondini M (2012) Assessing the activity of a large landslide in southern Italy by ground-monitoring and SAR interferometric techniques. Int J Remote Sens 33:3512–3530

    Article  Google Scholar 

  • Canuti P, Casagli N, Focardi P, Garzonio CA (1994) Lithology and slope instability phenomena in the basin of the Arno River. Mem Soc Geol Ital 48:739–754

    Google Scholar 

  • Canuti P, Casagli N (1996) Considerazioni sulla valutazione del rischio di frana. CNR-GNDCI Publication 846:57 pp, in Italian

  • Cascini L, Fornaro G, Peduto D (2009) Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J Photogramm 64:598–611

    Article  Google Scholar 

  • Cascini L, Fornaro G, Peduto D (2010) Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng Geol 112:29–42

    Article  Google Scholar 

  • Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the "La Clapiere" landslide evolution analysed from ortho-rectified aerial photographs. Eng Geol 68:123–139

    Article  Google Scholar 

  • Casu F, Manzo M, Lanari R (2006) A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens Environ 102:195–210

    Article  Google Scholar 

  • Catani F, Casagli N, Ermini L, Righini G, Menduni G (2005) Landslide hazard and risk mapping at catchment scale in the Arno River basin. Landslides 2:329–342

    Article  Google Scholar 

  • Cigna F, Bianchini S, Casagli N (2012) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283

    Article  Google Scholar 

  • Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the Permanent Scatterers Technique. Eng Geol 68:3–14

    Article  Google Scholar 

  • Colesanti C, Wasowski J (2006) Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng Geol 88:173–199

    Article  Google Scholar 

  • Crosetto M, Biescas E, Duro J, Closa J, Arnaud A (2008) Generation of advanced ERS and Envisat interferometric SAR products using the stable point network technique. Photogramm Eng Remote Sens 74:443–450

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, Special report 247. National Academy Press, Washington, DC, pp 36–75

    Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Delacourt C, Allemand P, Casson B, Vadon H (2004) Velocity field of the "La Clapiere" landslide measured by the correlation of aerial and QuickBird satellite images. Geophys Res Lett 31:L15619

    Article  Google Scholar 

  • Delacourt C, Allemand P, Berthier E, Raucoules D, Casson B, Grandjean P, Pambrun C, Varel E (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull Soc Géol Fr 178:89–100

    Article  Google Scholar 

  • Doubre C, Peltzer G (2007) Fluid-controlled faulting process in the Asal Rift, Djibouti, from 8 yr of radar interferometry observations. Geology 35:69–72

    Article  Google Scholar 

  • Ermini L, Catani F, Casagli N (2005) Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology 66:327–343

    Article  Google Scholar 

  • Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent Scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217

    Article  Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272

    Article  Google Scholar 

  • Fell R, Cororninas J, Bonnard C, Cascini L, Leroi E, Savage WZ, Eng J-J-TCL (2008) Guidelines for landslide susceptibility, hazard and risk-zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE T Geosci Remote 38:2202–2212

    Article  Google Scholar 

  • Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE T Geosci Remote 39:8–20

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans Geosci Remote 49:3460–3470

    Article  Google Scholar 

  • Getis A, Ord JK (1992) The analysis of spatial association by use of distance statistics. Geogr Anal 24:189–206

    Article  Google Scholar 

  • Glade T, Anderson M, Crozier M (2005) Landslide hazard and risk. John Wiley & Sons, Chichester, England

    Book  Google Scholar 

  • Greif V, Vlcko J (2012) Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia. Environ Earth Sci 66:1585–1595

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Herrera G, Notti D, Garcia-Davalillo JC, Mora O, Cooksley G, Sanchez M, Arnaud A, Crosetto M (2011) Analysis with C- and X-band satellite SAR data of the Portalet landslide area. Landslides 8:195–206

    Article  Google Scholar 

  • Herrera G, Gutierrez F, Garcia-Davalillo JC, Guerrero J, Notti D, Galve JP, Fernandez-Merodo JA, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43

    Article  Google Scholar 

  • Heyman Y, Steenmans C, Croisille G, Bossard M (1994) CORINE land cover project. Technical guide. European Commission, Directorate General Environment, Nuclear Safety and Civil Protection, ECSC-EEC-EAEC, Brussels, Luxembourg, 136 pp

    Google Scholar 

  • Hilley GE, Burgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304:1952–1955

    Article  Google Scholar 

  • Hooper A, Zebker H, Segall P, Kampes B (2004) A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys Res Lett 31:L23611

    Article  Google Scholar 

  • Hooper A, Segall P, Zebker H (2007) Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J Geophys Res-Sol Ea 112, B07407

    Article  Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623

    Article  Google Scholar 

  • Hungr O (1997) Some methods of landslide hazard intensity mapping. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 215–226

    Google Scholar 

  • Kampes BM (2006) Radar interferometry: persistent scatterer technique. Springer, Netherlands

    Google Scholar 

  • Lanari R, Mora O, Manunta M, Mallorqui JJ, Berardino P, Sansosti E (2004) A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE T Geosci Remote 42:1377–1386

    Article  Google Scholar 

  • Lu P, Casagli N, Catani F (2010) PSI-HSR: a new approach for representing Persistent Scatterer Interferometry (PSI) point targets using the hue and saturation scale. Int J Remote Sens 31:2189–2196

    Article  Google Scholar 

  • Lu P, Stumpf A, Kerle N, Casagli N (2011) Object-oriented change detection for landslide rapid mapping. IEEE Geosci Remote S 8:701–705

    Article  Google Scholar 

  • Lu P, Casagli N, Catani F, Tofani V (2012) Persistent Scatterers Interferometry Hotspot and Cluster Analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int J Remote Sens 33:466–489

    Article  Google Scholar 

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • Massironi M, Zampieri D, Bianchi M, Schiavo A, Franceschini A (2009) Use of PSInSAR (TM) data to infer active tectonics: clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy). Tectonophysics 476:297–303

    Article  Google Scholar 

  • Metternicht G, Hurni L, Gogu R (2005) Remote sensing of landslides: an analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments. Remote Sens Environ 98:284–303

    Article  Google Scholar 

  • Mora O, Mallorqui JJ, Broquetas A (2003) Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE T Geosci Remote 41:2243–2253

    Article  Google Scholar 

  • Morelli M, Piana F, Mallen L, Nicolo G, Fioraso G (2011) Iso-kinematic maps from statistical analysis of PS-InSAR data of Piemonte, NW Italy: comparison with geological kinematic trends. Remote Sens Environ 115:1188–1201

    Article  Google Scholar 

  • Prati C, Ferretti A, Perissin D (2010) Recent advances on surface ground deformation measurement by means of repeated space-borne SAR observations. J Geodyn 49:161–170

    Article  Google Scholar 

  • Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507

    Article  Google Scholar 

  • Righini G, Pancioli V, Casagli N (2012) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens 33:2068–2096

    Article  Google Scholar 

  • Sato HP, Hasegawa H, Fujiwara S, Tobita M, Koarai M, Une H, Iwahashi J (2007) Interpretation of landslide distribution triggered by the 2005 Northern Pakistan earthquake using SPOT 5 imagery. Landslides 4:113–122

    Article  Google Scholar 

  • Schuster RL, Fleming RW (1986) Economic losses and fatalities due to landslides. Bull Assoc Eng Geol 23:11–28

    Google Scholar 

  • Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, London, UK

    Book  Google Scholar 

  • Smith LC (2002) Emerging applications of interferometric synthetic aperture radar (InSAR) in geomorphology and hydrology. Ann Assoc Am Geogr 92:385–398

    Article  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer-Verlag, New York

    Book  Google Scholar 

  • Strozzi T, Wegmuller U, Keusen HR, Graf K, Wiesmann A (2006) Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Geosci Remote S 3:15–18

    Article  Google Scholar 

  • Tofani V, Raspini F, Catani F, Casagli N (2013) Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens 5:1045–1065

    Article  Google Scholar 

  • Travelletti J, Delacourt C, Allemand P, Malet JP, Schmittbuhl J, Toussaint R, Bastard M (2012) Correlation of multi-temporal ground-based optical images for landslide monitoring: application, potential and limitations. ISPRS J Photogramm 70:39–55

    Article  Google Scholar 

  • van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation — why is it still so difficult? B Eng Geol Environ 65:167–184

    Article  Google Scholar 

  • van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131

    Article  Google Scholar 

  • Varnes DJ, IAEG Commission on Landslides (1984) Landslide hazard zonation—a review of principles and practice. UNESCO, Paris, p 63

    Google Scholar 

  • Vilardo G, Ventura G, Terranova C, Matano F, Nardo S (2009) Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture Radar Interferometry. Remote Sens Environ 113:197–212

    Article  Google Scholar 

  • Werner C, Wegmuller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In: Proceedings of IGARSS 2003, 23rd IEEE international geoscience and remote sensing symposium, Toulouse, France, 21–25 July 2003. Piscataway, NJ, pp 4362–4364

  • Zhang L, Lu Z, Ding XL, Jung HS, Feng GC, Lee CW (2012) Mapping ground surface deformation using temporarily coherent point SAR interferometry: application to Los Angeles Basin. Remote Sens Environ 117:429–439

    Article  Google Scholar 

  • Zhao CY, Lu Z, Zhang Q, de la Fuente J (2012) Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote Sens Environ 124:348–359

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (No. 41201424), 973 National Basic Research Program (No. 2013CB733203 and No. 2013CB733204), 863 National High-Tech R&D Program (No. 2012AA121302) and Mountain Risks FP6 project of European Commission (MRTN-CT-2006-035798). The authors are grateful to the staff of Tele-Rilevamento Europa, a spin-off company of Politecnico di Milano owning the patent of PSInSAR™ technique, for the data processing and software development. The authors also thank the Arno River Basin Authority for data sharing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, P., Catani, F., Tofani, V. et al. Quantitative hazard and risk assessment for slow-moving landslides from Persistent Scatterer Interferometry. Landslides 11, 685–696 (2014). https://doi.org/10.1007/s10346-013-0432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0432-2

Keywords

Navigation